MATH 211: 4/4 WORKSHEET CONVERGENCE TESTS III

Ratio test. Consider
$$\sum_{n=1}^{\infty} a_n$$
 and compute $R = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.
• If $r < 1$ then the series converges absolutely.
• If $r > 1$ then the series diverges.
• If $r = 0$ then the test in inconclusive.

Root test. Consider
$$\sum_{n=1}^{n} a_n$$
 and compute $R = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.
• If $r < 1$ then the series converges absolutely.

- If r > 1 then the series diverges.
- If r = 0 then the test in inconclusive.

For each series say whether it converges or diverges.

(1) $\sum_{n=0}^{\infty} \frac{1}{n!}$ (2) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$, where x is a fixed number (3) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}$ (4) $\sum_{n=0}^{\infty} \frac{(-x)^n}{(2n+1)!}$, where x is a fixed number (5) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ (6) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ (7) $\sum_{n=1}^{\infty} \frac{(n^2+3)^n}{(2n^2-4)^n}$ (8) $\sum_{n=1}^{\infty} \frac{1}{n^n}$ (9) $\sum_{n=2}^{\infty} \frac{5^n}{6^n - 2^n}$

Confirm that the R = 1 case of the ratio and root tests are inconclusive.

- (1) Consider a *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ and compute the ratio test *R*. (2) Explain why this shows the ratio test is inconclusive.
- (3) Compute the root test R for a p-series.
- (4) Explain why this shows the root test is inconclusive.