MATH 211: 3/31 WORKSHEET CONVERGENCE TESTS I

Today we focus on series whose terms are all positive. We will have various tests you can use to check if a series converges or diverges. Most tests are one way; if they apply they tell you the convergence status, but if they don't apply they say nothing.

A useful fact: Any positive-term series either converges to a positive number or else diverges to $+\infty$.

Divergence test.

If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ diverges.

Comparison test.

- Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are positive term series where $a_n \le b_n$ for all n. If $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges. If $\sum_{n=1}^{\infty} a_n$ diverges then $\sum_{n=1}^{\infty} b_n$ diverges.

Limit comparison test.

Consider $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ positive term series. Suppose that $\lim_{n\to\infty} \frac{a_n}{b_n} \leq c$, for c a constant (equivalently: for all infinite N, $\operatorname{st}(\frac{a_N}{b_N}) \leq c$). Then

- If ∑_{n=1}[∞] b_n converges then ∑_{n=1}[∞] a_n converges.
 If ∑_{n=1}[∞] a_n diverges then ∑_{n=1}[∞] b_n diverges.

Integral test.

Suppose f(x) is a continuous, decreasing, always positive function. Then $\int_1^{\infty} f(x) dx$ converges if and only if $\sum_{n=1}^{\infty} f(n)$ converges.

p-series.

The *p*-series is a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$, where *p* is a constant. The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.

For each series determine whether it converges or diverges. Which test did you use? If more than one can be applied, try giving multiple explanations.

(1)
$$\sum_{n=1}^{\infty} \frac{n}{n+4}$$

(2) $\sum_{n=1}^{\infty} \frac{3}{n^2-1}$
(3) $\sum_{n=1}^{\infty} \frac{n^2+1}{n^3-1}$
(4) $\sum_{n=1}^{\infty} \frac{2^n}{3^n+4}$
(5) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
(6) $\sum_{n=1}^{\infty} \frac{1}{1+\ln n}$
(7) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$
(8) $\sum_{n=1}^{\infty} \frac{1}{2^n-n^2}$
(9) $\sum_{n=1}^{\infty} \frac{1}{n!}$

Determine whether each improper integral converges by checking convergence of a series.

(1)
$$\int_{2}^{\infty} \frac{\mathrm{d}x}{\ln x}$$

(2)
$$\int_{2}^{\infty} x^{-x} \,\mathrm{d}x$$