MATH 211: 3/28 WORKSHEET

A series $\sum_{n=1}^{\infty} a_n$ converges if and only if its sequence of partial sums converges. Unrolling the definition
of convergence of a sequence, this says $\sum_{n=1}^{\infty} a_n = \operatorname{st}\left(\sum_{n=1}^{N} a_n\right) \qquad (N \text{ is any positive infinite hyperinteger})$ $= \lim_{b \to \infty} \sum_{n=1}^{b} a_n$

If this standard part/limit is undefined, then we say the series diverges.

Analogy: You can think of series as being like discrete integrals: $\sum_{n=1}^{\infty} a_n$ behaves a lot like $\int_a^b f(x) dx$.

Algebra Rules. Suppose
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ converge, and c is a constant.
• (Sum rule) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$
• (Difference rule) $\sum_{n=1}^{\infty} (a_n s b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$
• (Constant rule) $\sum_{n=1}^{\infty} c a_n = c \sum_{n=1}^{\infty} a_n$
• (Inequality rule) If each $a_n \le b_n$ then $\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$.

Theorem. A series $\sum_{n=1}^{\infty} a_n$ converges if and only if any of its *tail series* $\sum_{n=k}^{\infty} a_n$ converge (k is any positive integer).

Corollary. Convergence of a series is not affected by adding, removing, or changing finitely many terms.

Everything on this page holds if the series starts at an index besides n = 1.

Calculate the value of the following series. [Hint: recall from Wednesday the formula for the sum of a geometric series.]

(1)
$$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} + \dots$$

(2) $\sum_{n=3}^{\infty} \frac{1}{5^n}$
(3) $2 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} + \dots$
(4) $-3 + 7 + 1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{10^n}$
(5) $\sum_{n=0}^{\infty} \frac{1}{2^n} + \frac{1}{3^n}$
(6) $\sum_{n=0}^{\infty} \frac{1}{3^n} - \frac{1}{5^n}$

You can check the algebra rules by hand.

- (1) Check the sum rule by letting $\langle S_n \rangle$ and $\langle T_n \rangle$ be the sequences of partial sums of the a_n and b_n series, then calculating the sequence of partial sums of the $a_n + b_n$ series. Note which algebra rule for standard parts/limits you used.
- (2) Show that the assumption the two series converge is necessary for the sum rule by giving an example of series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ which each diverge yet $\sum_{n=1}^{\infty} a_n + b_n$ converges.
- (3) Do a similar process to check the difference rule.
- (4) Do a similar process to check the constant rule.
- (5) Do a similar process to check the inequality rule.

Prove the theorem and corollary on the previous page by following these steps.

- (1) Find the value by which the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=k}^{\infty} a_n$ differ.
- (2) Assuming $\sum_{\substack{n=1\\\infty}}^{\infty} a_n = S$, what value does $\sum_{\substack{n=k\\\infty}}^{\infty} a_n$ converge to?
- (3) Assuming $\sum_{n=k}^{n-1} a_n = S$, what value does $\sum_{n=1}^{\infty} a_n$ converge to? (Note the swapped starting indices!)
- (4) Why does this give the theorem?
- (5) For the corollary, explain why if a series $\sum_{n=1}^{\infty} b_n$ is obtained from $\sum_{n=1}^{\infty} a_n$ by adding, removing, or changing finitely many values then there are k and ℓ so that $a_{k+i} = b_{\ell+i}$ for all $i \ge 0$.

(6) Explain why this means $\sum_{n=k}^{\infty} a_n = \sum_{n=\ell}^{\infty} b_n$, and why that means the two series have the same convergence property.