MATH 210: 1/29 WORKSHEET

For the following, determine with the expression is infinitesimal, finite but non-infinitesimal, or infinite. Here ε is infinitesimal, *a* is positive and finite, and *H* is positive and infinite.

(1)
$$3a^2 + 3a\varepsilon + \varepsilon^2$$

(2) $\frac{3}{\sqrt{\varepsilon}}$
(3) $\frac{\sqrt{a+\varepsilon} - \sqrt{a}}{\varepsilon}$
(4) $\sqrt{H+100} - \sqrt{H}$
(5) $\frac{3H^2 - H}{H^2 + 4}$

For the following, determine the standard part of the expression, or say why the standard part is undefined. Here ε is infinitesimal, *a* is positive and finite, and *H* is positive and infinite.

(1)
$$3a^2 + 3a\varepsilon + \varepsilon^2$$

(2) $\frac{3}{\sqrt{\varepsilon}}$
(3) $\frac{\sqrt{a+\varepsilon} - \sqrt{a}}{\varepsilon}$
(4) $\sqrt{H+100} - \sqrt{H}$
(5) $\frac{3H^2 - H}{H^2 + 4}$

Calculate the following limits. Here a is a positive real number.

(1)
$$\lim_{x \to 0} 3a^2 + 3ax + x^2$$

(2)
$$\lim_{x \to 0} \frac{3}{\sqrt{x}}$$

(3)
$$\lim_{x \to 0} \frac{\sqrt{a+x} - \sqrt{a}}{x}$$

(4)
$$\lim_{x \to \infty} \sqrt{x+100} - \sqrt{x}$$

(5)
$$\lim_{x \to \infty} \frac{3x^2 - x}{x^2 + 4}$$