MATH 211 RULES FOR HYPERREALS

EXTENDING THE REALS TO THE HYPERREALS

(1) The Extension Principle

- The reals are a subset of the hyperreals;
- There is a nonzero infinitesimal;
- Any function f on the reals has a *natural extension* to a function on the hyperreals, with the same number of variables.
- (2) **The Transfer Principle.** Any *real* statement about functions on the reals holds for their natural extensions on the hyperreals.

A *real statement* is a finite combination of equalities, inequalities, or statements about whether a function is defined or undefined.

Examples:

- (Commutativity of addition) x + y = y + x;
- (Rules for <) If 0 < x < y then 0 < 1/y < 1/x;
- (Domains) $\sqrt[3]{x}$ is defined everywhere;
- (No division by 0) x/0 is never defined;
- (Algebraic identities)
 - $x^{2} y^{2} = (x + y)(x y);$
- (Trig identities) $\sin^2 x + \cos^2 x = 1.$

Nonexamples:

- There are no nonzero infinitesimals.
- The domain of sin only consists of real numbers;
- Every input to the exponential function is finite.

The Algebra of Infinitesimal, finite, and infinite numbers

For these, ε and δ (epsilon and delta) are infinitesimal, b and c are finite but non-infinitesimal, and H and K are infinite.

- (1) Real Numbers
 - (a) 0 is the only infinitesimal real number;
 - (b) Every real number is finite.
- (2) **Negatives**
 - (a) $-\varepsilon$ is infinitesimal;
 - (b) -b is finite and non-infinitesimal;
 - (c) -H is infinite.

(3) **Reciprocals**

- (a) $1/\varepsilon$ is infinite (if $\varepsilon \neq 0$);
- (b) 1/b is finite;
- (c) 1/H is infinitesimal.
- (4) **Sums**
 - (a) $\varepsilon + \delta$ is infinitesimal;
 - (b) $b + \varepsilon$ is finite and non-infinitesimal;
 - (c) b+c is finite (possibly infinitesimal);
 - (d) $H + \varepsilon$ and H + b are infinite.
- (5) **Products**
 - (a) $\varepsilon \cdot \delta$ and $\varepsilon \cdot b$ are infinitesimal;
 - (b) $b \cdot c$ is finite and non-infinitesimal;
 - (c) $b \cdot H$ and $H \cdot K$ are infinite.

(6) Quotients

- (a) ε/b , ε/H , and b/H are infinitesimal;
- (b) b/c is finite and non-infinitesimal;
- (c) b/ε , H/ε , and H/B are infinite.

(7) **Powers**

- (a) ε^c is infinitesimal;
- (b) b^c is finite and non-infinitesimal;
- (c) H^c is infinite.

(8) Indeterminate forms

(a) ε/δ , H/K, $\varepsilon \cdot H$ and H + K could all be either infinitesimal, finite but non-infinitesimal, or infinite. It depends on the specific values. Remember: 0/0, $\infty/$, $0 \cdot \infty$, and

 $\infty - \infty$ are indeterminate.

Properties of \approx

Two numbers a and b are *infinitely close*, $a \approx b$, if their difference a - b is infinitesimal.

- (1) Basic properties.
 - (a) a is infinitesimal if and only if $a \approx 0$;
 - (b) If a and b are real and $a \approx b$ then a = b.
- (2) Equality-like properties.
 - (a) $a \approx a$;
 - (b) If $a \approx b$ then $b \approx a$;
 - (c) If $a \approx b$ and $b \approx c$ then $a \approx c$.
- (3) Size properties. Assume $a \approx b$.
 - (a) If a is infinitesimal then so is b;
 - (b) If a is finite then so is b;
 - (c) If a is infinite then so is b.

STANDARD PARTS

Standard part principle. Every finite hyperreal number a is infinitely close to exactly one real number. We call this number the *standard* part of a, and denote it st(a).

- (1) **Basic properties.** Let a be finite.
 - (a) st(a) is a real number;
 - (b) $a = \operatorname{st}(a) + \varepsilon$ for some infinitesimal ε ;
 - (c) If a is real then a = st(a).

(2) Arithmetic properties. Let a and b be finite. (a) st(-a) = -st(a); $\lim_{x \to c} -f(x) = -\lim_{x \to c} f(x)$ (b) st(a + b) = st(a) + st(b); $\lim_{x \to c} f(x) + g(x) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ (c) $\operatorname{st}(a-b) = \operatorname{st}(a) - \operatorname{st}(b);$ $\lim_{x \to c} f(x) - g(x) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$ (d) $\operatorname{st}(a \cdot b) = \operatorname{st}(a) \cdot \operatorname{st}(b)$; $\lim_{x \to \infty} f(x)g(x) = \left(\lim_{x \to \infty} f(x)\right) \left(\lim_{x \to \infty} g(x)\right)$ (e) $\operatorname{st}(a/b) = \operatorname{st}(a)/\operatorname{st}(b)$, if $\operatorname{st}(b) \neq 0$; $\lim_{x \to c} \frac{f(x)}{q(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} q(x)}$ (f) $\operatorname{st}(a^n) = \operatorname{st}(a)^n$; $\lim_{x \to c} (f(x))^n = \left(\lim_{x \to c} f(x)\right)^n$ (g) st($\sqrt[n]{a}$) = $\sqrt[n]{\text{st}(a)}$, if $a \ge 0$; $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$ (h) If a < b then $\operatorname{st}(a) < \operatorname{st}(b)$. If $f(x) \le g(x)$ then $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$.