MATH 113: 4/4 WORKSHEET

One of the uses mathematicians put to first-order logic is to understand how structures differ. Do they behave the same except things are renamed, or are there fundamental differences in their behavior? A *structure* is the same as what we have been calling an interpretation—a choice of domain and the meaning of the names and predicates.

Orders.

An order is a domain L with a binary predicate \leq which satisfies the Reflexivity, Antisymmetry, and Transitivity axioms:

- (Reflexivity) $\forall x \ x \le x$
- (Antisymmetry) $\forall x \forall y \ [(x \le y) \land y \le x) \to x = y]$
- (Transitivity) $\forall x \forall y \forall z [(x \le y \land y \le z) \to x \le z]$

When working with orders we adopt the following notation:

- x < y is an abbreviation for $x \le y \land x \ne y$;
- $x \ge y$ is an abbreviation for $y \le x$; and
- x > y is an abbreviation for y < x.

The familiar number systems—natural numbers, integers, rational numbers, real numbers are all examples of orders. In effect, we don't care about their arithmetic properties and we just focus on \leq : what number is bigger than what. So when we talk about them being different, we mean different in ways we can express just using \leq . For example, one way the rational numbers differ from the integers is that you can divide any two nonzero rationals and get a rational, whereas dividing integers can take you outside the structure. That difference wouldn't count for our purposes.

Finite orders.

Draw pictures to convince yourself that for any finite whole number n there is an order with n objects in it.

The natural numbers versus the integers.

The integers \mathbb{Z} are the whole numbers, positive or negative, while the natural numbers \mathbb{N} are the whole numbers ≥ 0 .

- Draw pictures to illustrate Z and N. Do they look to have the same structure? If not, can you say how they differ?
- (2) In an order, a *minimum* is an object m so that $m \leq x$ for every other object x. Can you write a FOL sentence which expresses "the order has a minimum"? [Hint: if you first write a sentence $\varphi(m)$ which expresses "m is a minimum", then you simply need to write $\exists y \ \varphi(y)$.]
- (3) Explain how this lets you distinguish \mathbb{Z} from \mathbb{N} as orders.

The natural numbers versus the positive integers.

As an ad hoc name, let \mathbb{P} refer to the positive integers, i.e. those > 0.

- (1) Draw a picture to illustrate \mathbb{P} and compare it to your picture for \mathbb{N} . Do they look to have the same structure?
- (2) Show they have the same structure by explaining how to label the picture either with the objects in \mathbb{P} or with the objects in \mathbb{N} .

The integers versus the rationals.

The rationals \mathbb{Q} are numbers that are fractions of two integers. They include numbers like 7, $\frac{1}{2}$, or $-\frac{19}{3}$, but don't include $\sqrt{2}$ or π .

- (1) One property of \mathbb{Q} is that between any two distinct numbers you can find a number in the middle. Can you explain why this is? Even better, can you come up with a formula for a number that's between x and y?
- (2) Can you write a FOL sentence which expresses "if x < y then there is an object z between x and y"?
- (3) Explain how this lets you distinguish \mathbb{Q} from \mathbb{Z} as orders.

The rationals versus the reals.

The real numbers \mathbb{R} include irrational numbers like $\sqrt{3}$ or π .

- (1) Repeat what you did with \mathbb{Q} but for \mathbb{R} . That is, come up with a formula that gives you a number between x and y and write a FOL sentence which expresses "if x < y then there is an object z between x and y".
- (2) Do you think you can distinguish \mathbb{Q} and \mathbb{R} as orders? Give an intuition for why or why not.