
MATH 113: 3/12 WORKSHEET

Truth-functional logic has limited expressiveness. For many important applications of
logic, most notably mathematics, we need more. First-order logic provides this this extra
expressiveness.

We keep the prior grammar of logical connectives: ∧, ∨, ¬, →, and ↔. We expand
the grammar by adding these new elements.

• Names and variables for objects. We use lowercase letters from earlier in
the alphabet for names and lowercase letters from the end of the alphabet for
variables. For example, a, n, or c7 would all be names, while x or y would be
variables.

• Predicates. We use capital letters for predicates—things that may be true of
one or more objects. For example, we might use E(x) to stand for “x is an even
number”.

• Quantifiers. We add two quantifiers which let us talk about how many objects
satisfy such and such. The universal quantifier ∀ (“for all” or “every”) says that
all objects satisfy such and such. The existential quantifier ∃ (“there exists” or
“some”) says that some object satisfies such and such. For example, ∀x E(x)
says that every object is an even number while ∃x E(x) says that some object is
an even number.

While these are the main new concepts to understand first-order logic, there’s others we
need.

Domains.
If you’re talking about physical reality, there are no unicorns so ∃x U(x) would be

false, where U(x) means “x is a unicorn”. But maybe we’re instead talking about your
Dungeons and Dragons game, where there are unicorns. In general, when using first-
order logic we care about the domain we are talking about.

A domain is a collection of objects (usually assumed at least one object). We pick a
domain to have only the objects of interest to us. For example, if you’re doing math-
ematics then your domain wouldn’t include humans or chairs. Each name picks out
exactly one object in the domain, but an object can have one name, many, or none at
all.

Sometimes the domain is left implicit. But it is good practice to be explicit about
what your domain is.

Recall: “every A is B” is expressed as ∀x A(x) → B(x) and “some A is B” is expressed
as ∃x A(x) ∧B(x).

1



2 MATH 113: 3/12 WORKSHEET

Example. Suppose we are talking about numbers, so our domain is the collection of
real numbers like 0 or −2 or π. What do we do if we want to talk just about integers
(whole numbers)? For example, “every integer is either even or odd” is true, but “every
real number is either even or odd” is not, because π is neither.

The solution is we can introduce a predicate to cut down on our domain. Let’s have
Z(x) mean “x is an integer” (Z because that’s the usual symbol for the set of integers—Z
from the German word “Zahlen”). Then we can express “every integer is either even or
odd” as:

∀x [Z(x) → (E(x) ∨O(x))].

(1) How would you express the “there is an integer which is not even”?
(2) How would you express “there is a non-integer which is neither even nor odd”?
(3) How would you express “every odd number is an integer”?

Identity.
A special predicate is the identity predicate, saying that x and y are identical—

the same object. Borrowing from mathematics we write this as x = y. Unlike other
predicates where the same letter could be reinterpreted to refer to a different concept,
with the identity predicate we only allow this interpretation. That is, x = y always
means “x and y are the same object”.

One use of the identity predicate is to say that different names give the same object.
For instance, suppose j and w are both names to refer to the object Julia Williams.
Then j = w expresses that fact.

We write x 6= y as an abbreviation for ¬(x = y).

Counting.
Equipped with the identity predicate now we can count. For example, here is how we

express that our domain only has one object:
∃x ∀y y = x.

Similarly, suppose U(x) means “x is a unicorn” and we want to express that there is
only one unicorn in our domain. We could do this by writing:

∃x [U(x) ∧ ∀y (U(y) → y = x)].

We could express that our domain has at least two objects by writing
∃x ∃y x 6= y.

(1) How do you express that the domain has exactly two objects?
(2) How do you express that there are at least two unicorns?
(3) How do you express that there are exactly two unicorns?
(4) How do you express that the domain has at least three objects? Exactly three

objects?
(5) How do you express that the domain has at most two objects?
(6) Can you generalize the pattern and explain how to express the domain has at

least n objects? Exactly n objects?


