
MATH 355 PROBLEM SET

CHAPTER 1: ORDINALS

KAMERYN J. WILLIAMS

Problem 1. Let A be a set. Consider the collection of all ordinal numbers of well-orders whose
domain is a subset of A, ordered by ≤. Call this collection of ordinals ℵ(A). Prove that there is no
injection ℵ(A)→ A. As a corollary derive that there is a well-order whose domain is not countable.

Problem 2. Prove that a linear order satisfying induction implies it is well-founded. That is,
consider a linear order (X,≤). Assume that for any Y ⊆ X if (for all x ∈ X we have [if every
y < x is in X then x ∈ X]), then Y = X. (Brackets added to make the logical structure clear.)
Prove that X must be well-founded.

Problem 3. Prove that the definition of ordinal addition by transfinite recursion matches our first
definition of ordinal addition.

Problem 4. Prove that the definition of ordinal multiplication by transfinite recursion matches our
first definition of ordinal multiplication.

Problem 5. Use the recursive definition of ordinal arithmetic to prove these properties.

0 · α = 0;

1 · α = α;

(α · β) · γ = α · (β · γ);

α · (β + γ) = α · β + α · γ;

Problem 6. Prove these properties of ordinal exponentation.

0β = 0, if β 6= 0;

1β = 1;

αβ < αγ , if 1 < α and β < γ;

αγ ≤ βγ , if α ≤ β.

Problem 7. Prove these properties of ordinal exponentiation:

αβ+γ = αβ · αγ ;

αβ·γ =
(
αβ
)γ
.

Problem 8. Prove that every ordinal can be written uniquely in the form

ωα0 · n0 + ωα1 · n1 + · · ·+ ωαk · nk,
where k is finite, each n0 is a finite ordinal, and α0 > α1 > · · · > αk are ordinals.
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Problem 9. A function f on the ordinals is increasing if α ≤ f(α) and f is continuous if given
any sequence 〈αi : i ∈ λ〉 we have

f

(
sup
i∈λ

αi

)
= sup

i∈λ
f(αi).

Show that if f : Ord→ Ord is increasing and continuous then there always is an ordinal α so that
f(α) = α. Moreover show that if β is any ordinal we can always find such α to be larger than β.

Problem 10. [This problem uses some ideas from real analysis or topology. If you’ve taken neither
of those classes you may find it challenging.]

A set C ⊆ R is called closed if it contais all its accumulation points, where x is an accumulation
point of C if there are points in C \ {x} abitrarily close to x.1 A set P ⊆ R is called perfect if it is
equal to the set of its accumulation points. Follow this outline to prove that any closed set C ⊆ R
can be decomposed into a disjoint union of a perfect set and a countable set.

(1) Define the derivative of a set A ⊆ R to be A′ = {x ∈ R : x is an accumulation point of A}.
Show that if A is closed then so is A′.

(2) Starting from a closed set C recursively define a sequence of closed sets Cα:
• C0 = C;
• Cα+1 = C ′α; and
• If γ is limit, then Cγ =

⋃
α<γ Cα.

Say why every Cα is closed and that if Cα = Cα+1 then Cα is perfect.
(3) Argue that Cα \Cα+1 is always countable. [Hint: First see that if x ∈ X \X ′ then there is

an open interval U 3 x so that U ∩X = {x}.]
(4) Finally, show that no matter what closed C you start with, there’s a countable ordinal α so

that Cα = Cα+1.
(5) Conclude that C is the union of a perfect set and a countable set.
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1That is, for any distance ε > 0 there is y ∈ C \ {x} so that |x− y| < ε. If you know another characterization of
closed sets you’re welcome to use it instead for this problem.


