
MATH 211: 10-27 WORKSHEET

If you think this class is your first time seeing infinite series, it isn’t. Writing a number as
an infinite sequence of digits is a shorthand for an infinite sum. For example,

π = 3.14159265 . . .
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(1) If the sequence of digits is one digit repeated forever, then this infinite series is a
geometric series. Write the numbers 0.333 . . . and 0.999 . . . as geometric series, and
use the formula for evaluating a geometric series to write them as fractions.

(2) If the sequence of digits is multiple digits repeated forever, then it’s equivalent to a
geometric series but you have to combine terms. For example,
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Write 0.252525 . . . as a fraction.
(3) Show that

∑∞
n=1

1
n2 converges by comparing it to the integral

∫∞
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x2 dx, which we

know converges by a calculation we did when looking at improper fractions. [Hint:
Can you represent the infinite sum as the area of a bunch of rectangles so that you
can compare that area to the area under the curve 1

x2 ?]

(4) Show that
∑∞
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n
diverges to the integral
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x
dx, which we know diverges to ∞.

[Hint: again think of the infinite sum as the area of infinitely many rectangles, but
now you need to see they have larger area than the area under the curve 1

x
.]
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