
MATH 1410: WORKSHEET FOR 3/31

Polynomials can be used to approximate other functions

One advantage of polynomials is that they are easy to calculate—they just involve addition, subtraction,
and multiplication. Contrast this with other functions, such as trig functions and exponentials. How do you
calculate what e1 is or what sin(1) is? Of course you can leave it in exact form, but what if you want it as
a decimal approximation. You could use a calculator, but that just pushes the question back a step: how
does your calculator do the computation?

It turns out that polynomials can be used to approximate other functions. Since it’s easy to add, subtract,
or multiply—or at least, it’s easy for a computer to repeatedly do these operations—you can turn a hard
problem like computing sin(1) into an easy problem of doing a lot of sums/products.

Before you look at how this happens, here’s a definition to make things simpler to write: For a natural
number n, the factorial of n is

n! = n · (n− 1) · (n− 2) · · · 2 · 1.

You can think of n! as counting the number of ways to line up n many distinct objects. (There’s n choices
for the first object, then n− 1 for the second, then n− 2 for the third, . . . )

(1) Use the desmos.com graphing calculator to graph the function ex.
(2) Compare ex to the function

f1(x) = 1 + x.

Then compare to the function

f2(x) = 1 + x +
x2

2!
.

(Note that desmos is smart enough to know what a factorial is.) Then to the function

f3(x) = 1 + x +
x2

3!
.

(3) More generally, you can compare to the function

fn(x) = 1 + x +
x2

3!
+ · · · +

xn

n!
.

What do you observe about the graphs as you let n be larger and larger? How large does n
have to be in order for fn(1) to be within 0.001 of e1?

(1) Graph the function sinx.
(2) Compare sinx to the function

g1(x) = x.

Then to the function

g3(x) = x− x3

3!
.

Then to the function

g5(x) = x− x3

3!
+

x5

5!
.

Then to the function

g7(x) = x− x3

3!
+

x5

5!
− x7

7!
.

(3) What do you observe about the graphs of gn(x) as you let n get larger and larger? What does
the general pattern for gn(x) look like? How large does n have to be in order for gn(1) to be
within 0.001 of sin(1)?
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(1) Graph the function cosx.
(2) Compare the graph of cosx to the graph of

h0(x) = 1,

then to

h2(x) = 1 − x2

2!
,

then to

h4(x) = 1 − x2

2!
+

x4

4!
.

(3) What do you observe about the graphs of hn(x) as you let n get larger and larger? What does
the general pattern for hn(x) look like? How large does n have to be in order for hn(1) to be
within 0.001 of cos(1)?

(1) Put together what you’ve seen and try to find polynomials kn(x) which approximate 2ex.
(2) What about sinx + cosx? Can you find polynomials `n(x) which approximate sinx + cosx?
(3) What about ex + sinx? Can you find polynomials mn(x) which approximate ex + sinx?
(4) What about e2x? Can you find polynomials pn(x) which approximate e2x?

Reasonable question at this point are: How do you figure out in the first place what the polynomials to
approximate ex, sinx, and cosx even are? How do you check that they really do work? Can you do this for
other functions? The short answer to these questions is, this takes calculus. The long answer is, [an entire
semester of calculus II].


