Unit 3 Assessment C

Learning Objective	Grade
Rates of Change	,
Pointwise Behavior	
Global Behavior	
Graphing	-
Rewriting Equations	
Transcendental Operations	

Name: Answer Key

Functions as Quantities Changing with Each Other

1. Find the average rate of change of $g(\theta) = \cos \theta$ between $\theta = \pi$ and $\theta = 2\pi$.

- (a) $\sin \theta$ is...
 - O Positive
 - Negative
 - O Zero
- (b) $\sin \theta$ is...
 - () Increasing
 - Orecasing
 - O Constant
- (c) The rate at which $\sin \theta$ is changing is...
 - O Positive
 - Negative
 - O Zero

- (d) $\cos \theta$ is...
 - O Positive
 - Negative
 - O Zero
- (e) $\cos \theta$ is...
 - Increasing
 - Decreasing
 - O Constant
- (f) The rate at which $\cos \theta$ is changing is...
 - Positive
 - Negative
 - + O Zero

decreary - Mag. ro.c.

McRary = pos. r.c.c.
Page 2 of 11

Behavior of Function at a Point

- 3. Let $f(x) = \sqrt{2} + 2\cos x$
- 10 (a) Find the y-intercept of f.

30 (b) Find the all zeros of f in $(-\infty, \infty)$.

X= ±3tr +2trK, Kis an integer

- 4. Find the value of θ in each of the following situations.
- $(a) \ \theta = \arcsin(-\frac{\sqrt{3}}{2})$

(b) $\sin \theta = -\frac{\sqrt{3}}{2}$ where θ is in $[0, 2\pi]$

(c)
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
 where θ is in $(-\infty, \infty)$

Just need general solutions

Behavior of Function Over an Interval

60

- 5. Let $g(x) = \cos x$, $(0 \le x \le 2\pi)$. Answer the following questions about the function g. Drawing a quick sketch of g may help you answer these questions.
 - (a) What is the range of g?

[-1,1]

1 7 7 27

(b) Over what interval is g increasing?

(11, 27)

(c) Over what interval is g decreasing?

(c, T)

(d) Over what interval is g concave up?

(五) 3至)

(e) Over what interval is g concave down?

(0,至)(强元四)

(f) Describe the extrema of g

The function g has an absolute maximum of 1 at x = 6 and 7

The function g has an absolute minimum of $\underline{}$ at $x = \underline{}$.

40

6. The graph m(t) is graphed below:

Find each of the following.

(a)
$$\lim_{t\to 0^-} m(t) =$$

(b)
$$\lim_{t \to 0^+} m(t) =$$

(c)
$$\lim_{t\to 0} m(t) = DN \in$$

(d) What is the range of m?

$$(-\infty,\infty)$$

Graphs of Functions

40

7. Let $h(x) = 2 - 4\sin(\frac{x}{5} + \pi)$. Describe each of the following.

h(x)=2-45m(\$(x+517))

(a) What is the amplitude of h?

4

(b) What is the period of h?

(c) How much is h shifted up or down?

h is shifted (circle one) up/down ___ units.

(d) How much is h shifted left or right?

h is shifted (circle one) left/right 5π units.

8. Write an equation for each of the following functions. Hint: you can write an equation for each of these without a horizontal shift.

30 each

short at middle, > +5m

Pered= 2 => B=1

Ampl= 3

V.5 = 0

Start at bottom=> - (05)

perrod =
$$4\pi$$
 >> $B=\frac{2\pi}{4\pi}=\frac{1}{2}$

Amp $l=2$
 $V.S=1$.

Rewriting Equations of Functions

- 9. Simplify the equation of each of the following functions fully. Show all steps
- (a) $f(x) = \cot x \sin x$

= Cosx Smx = Cosx

(x = TK, KeZ)

40

(b) $g(x) = \tan x \cos x \sin x + \cos^2 x$

(c) $k(x) = \cot^2 x \sin^2 x - \tan x \cot x$

Transcendental Operations

- 10. Let $\phi = \frac{10\pi}{7}$. Give the following answers in radians.
 - (a) Draw ϕ in standard poisition.

(b) State all angles that are coterminal with ϕ .

(c) State one angle that is coterminal with ϕ .

(d) State the reference angle of ϕ .

15

11. The angle α is graphed in standard position on the grid below. The point (-1,4) lays on the terminal side of α .

Find the value of each of the following trig functions:

(a)
$$\sin \alpha = \sqrt[4]{17}$$

(b)
$$\cos \alpha = -\frac{1}{\sqrt{17}}$$

(c)
$$\tan \alpha = -\frac{4}{1} = -4$$

10

12. The angle θ intersects the edge of the unit circle at the point (-0.5361, 0.8442).

Find the value of each of the following trig functions:

(a)
$$\sin \theta = 0.8447$$

(b)
$$\cos \theta = -0.536 1$$

15 13. Assume $\sin \beta = -\frac{\sqrt{13}}{4}$ and $\cos \beta = -\frac{3}{4}$. Find the values of each of the following trig functions:

(a)
$$\sec \beta = 1$$
 $\cos \beta = \sqrt{3}$

(b)
$$\csc \beta = \frac{1}{\sqrt{13}} = -\frac{4}{\sqrt{13}}$$

(c)
$$\tan \beta = \frac{5M\beta}{\cos \beta} - \frac{\sqrt{13}/4}{\sqrt{3}}$$

14. Evaluate each of the following:

(a)
$$\cos \pi = -1$$

(b)
$$\sin \frac{2\pi}{3} = + \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

Q3 (c)
$$\sin \frac{7\pi}{6} = -5 \times \frac{\pi}{6} = -\frac{1}{2}$$

Qy (d)
$$\cos \frac{7\pi}{4} = + \cos \frac{\pi}{4} = \sqrt{2}$$

(e)
$$\cot \frac{\pi}{2} =$$

G3 (f)
$$\sec \frac{4\pi}{3} = \frac{1}{\cos \frac{4\pi}{3}} = \frac{1}{-\cos \frac{\pi}{3}} = -2$$

(g)
$$\tan \frac{\pi}{4} = \Re \sin \frac{\pi}{4} = \Im \sin \frac{\pi}{4}$$

$$\left(\sin\frac{5\pi}{6}\right) = \pi/6$$

(h) $\arccos(\cos\frac{5\pi}{4}) = 3\pi/4$, to be a range of arccos

(i) $\arcsin(\sin\frac{5\pi}{6}) = \pi/6$, to be a range

•	•	•		
				1
		*		
			i	
				-