Unit 1 Assessment D

Name: Answer Key

Learning Objective	Grade	
Rates of Change		Eac
Pointwise Behavior		out
Global Behavio		each
Graphing		sepan
Rewriting Equations		3 /
Function Algebra		

Each graded out at 100, each graded separately.

Functions as Quantities Changing with Each Other

1. The function f(x) is graphed below:

(a) Draw a line that is secant to f at x = -2 and x = 1.

(b) What is the average rate of change of f between x = -2 and x = 1.

1-1-2) = = = 1

- (c) Describe how f is changing over $(-\infty, -2)$.
- (d) Describe how f is changing over (-2,0).
 - O increasing at a constant rate
- O increasing at a constant rate
- O increasing at an increasing rate
- O increasing at an increasing rate
- O increasing at a decreasing rate decreasing at a constant rate
- mincreasing at a decreasing rate
- O decreasing at an increasing rate
- O decreasing at a constant rate decreasing at an increasing rate
- O decreasing at a decreasing rate
- decreasing at a decreasing rate

2. The continuous function m(t) is represented in the table below:

(a) What is the average rate of change of m over [0,4]?

m(4) -m(0)

- (b) Describe how m(t) is changing over (0,3).
- (c) Describe how m(t) is changing over (4,7).
- O increasing at a constant rate
- increasing at a constant rate
- maincreasing at an increasing rate
- O increasing at an increasing rate
- O increasing at a decreasing rate
- O increasing at a decreasing rate
- O decreasing at a constant rate
- O decreasing at a constant rate
- O decreasing at an increasing rate
- decreasing at an increasing rate
- O decreasing at a decreasing rate
- O decreasing at a decreasing rate

3. Let $f(x) = x^2 - 9$. Find the average rate of change of f over [x, x + h]. You must show a step-by-step solution to receive credit.

Behavior of Function at a Point

4. The graph of k is given below:

Find the requested values. If any of them are not integer values, you may give approximate decimal answers.

(a) The value of k(2)

Undefined IDNE

(b) The value of c if k(c) = -1

C = 1 or 1

-1.5, 1.5

(d) The initial value of k

5. Let $w(x) = \frac{mx}{n} + 3n^2$ for constants $m, n \in \mathbb{R}$. Find each of the following: (a) The x-intercept(s) of w.

$$0 = \frac{1}{n} + 3n^{2}$$

$$\frac{1}{n} = -3n^{2}$$

$$\frac{1}{n} = -3n^{3}$$

 $(3n^{3}/m, 0)$

(b) The initial value(s) of w.

(3gpts)

6. Find the point(s) on the graph of f with a y-value of -3 if $f(x) = x^2 - 2x - 5$.

Behavior of Function Over an Interval

(25pts)

7. The function k(x) is graphed below:

Find each of the items to the right for this function.

(a) The increasing intervals of k.

(b) The decreasing intervals of k.

$$(n,\infty)$$

(c) What is the domain of k?

(d) What is the range of k?

(e) Complete the following sentence:

The function k has an absolute minimum/maximum (circle one) of __k(n) at x =____.

(35pts)

8. Let $j(x) = -2(x+1)^2 - 5$. State each of the following:

(a) The increasing intervals of j.

$$(-0,-1)$$

(b) The decreasing intervals of j.

$$(-1,\infty)$$

(c) Is g concave up or concave down?

- O concave up
- oncave down
- O neither

(d) What is the domain of j?

(e) What is the range of j?

$$\left(-\infty,-5\right]$$

(f) Fill in the blanks below:

$$x \to -\infty, j(x) \to \underline{\hspace{1cm}}$$

$$x \to \infty, j(x) \to \underline{\hspace{1cm}}$$

(g) Complete the following sentence:

The function j has an absolute minimum/maximum (circle one) of -5 at x = -1.

(ug)

9. Let $f(x) = x^2 - 2x + 8$. State each of the following. Hint: Finding the vertex may help you answer the following questions.

(a) The increasing intervals of f.

vertex at (1,7) $x = -\frac{(-2)}{21} = 1$

(b) The decreasing intervals of f.

f(1)=12-2+8

(c) Is f concave up or concave down?

- O concave down
- O neither
- (d) What is the domain of f?

(e) What is the range of f?

(f) Fill in the blanks below:

$$x \to -\infty, f(x) \to \underline{\hspace{1cm}}$$

$$x \to \infty, f(x) \to \underline{\qquad}$$

(g) Complete the following sentence:

The function f has an absolute minimum/maximum (circle one) of \mathcal{F} at $x = \mathcal{I}$.

Graphs of Functions

(30pts)

10. Graph the function $k(t) = \begin{cases} -6 - t & t < -2 \\ -4 & -2 \le t < 0 \\ 5 & t > 0 \end{cases}$

(25pts)

11. A quadratic function has zeros of -5 and 3. It also has an initial value of 7.5. This function has a maximum of 8 which occurs at x = -1. Sketch a graph of the function on the grid below by plotting its intercepts and vertex.

(USpts)

12. The following are graphs of the function $f(t) = m + n(t+q)^2$ with constants $m, n, q \in \mathbb{R}$ are given below. Determine which of the following statements below each graph are true about the values for each constants for the function graphed above.

- $\bigcirc m = 0$

- n < 0
- \bigcap n=0
- $\bigcap n > 0$

- $\bigcirc q = 0$
- $\bigcirc q > 0$

- m < 0
- $\bigcirc m = 0$
- $\bigcirc m > 0$

- $\bigcirc n < 0$
- $\bigcirc n = 0$
- 0 n > 0

- $\bigcirc q < 0$
- $\bigcirc q > 0$

- $\bigcirc m < 0$
- m=0
- $\bigcirc m > 0$

- $\bigcirc n < 0$
- $\bigcirc n = 0$
- \bigcirc n > 0

- $\bigcap a < 0$
- $\bigcirc q =$

Rewriting Equations of Functions

13. Complete the square to rewrite $h(x) = x^2 - 8x + 5$ in the form $y = a(x+h)^2 + k$.

$$h(x) = x^{2} - 8x + 16 - 16 + 5$$

$$= (x - 4)^{2} - 16 + 5$$

$$h(x) = (x - 4)^{2} - 11$$

(60, b)

- 14. Rewrite each of the following function's equations in factored form.
 - (a) $f(n) = 90n^2 10$

OR!
$$F(n) = 10(9n^2 - 1) = 10(3n - 1)(3n + 1)$$

(b)
$$g(x) = x^2 - 8x + 12$$

(c)
$$k(t) = 7t^2 + 8t + 1$$

$$k(t) = (7t+1)(t+1)$$

Function Algebra

- 15. Let h(x) = 2x 10 and $j(x) = 5x^2$. Find each of the following and write the equation in simplified in descending order.
 - (a) $(j \circ h)(x)$

$$j(h(x)) = j(2x-10) = 5(2x-10)^{2}$$

$$= 5(4x^{2}-40x+100)$$

$$= 70x^{2}-700x+500$$

$$h(j(x)) = h(5x^{2}) = 7(5x^{2}) - 10$$

$$= 10x^{2} - 10$$

	+	
	N.	