Math 1316: Mastery Quiz 8 (Version A)

Please show all your work for computations, and write your final answers in the boxes.

1. Your friend tells you that $\sin(2x) = 2\sin(x)$ for any angle x. When you asked them to justify this, they said that if $x = \pi$ then $\sin(2\pi) = 0$ and $2\sin(\pi) = 0$ so they are the same. Explain why your friend is wrong by giving a different angle which is a counterexample to their claim.

2. Find the exact value of $\cos(75^{\circ})$. [Hint: $\cos(45^{\circ}) = \sin(45^{\circ}) = \sqrt{2}/2$ while $\cos(30^{\circ}) = \sqrt{3}/2$ and $\sin(30^{\circ}) = 1/2$.]

 $\frac{\cos(75^{\circ}) = \sqrt{5 - \sqrt{2}}}{\sqrt{5}} = \frac{\cos(75^{\circ}) = \cos(45^{\circ}) = \cos(45^{\circ}) = \cos(45^{\circ}) = \sin(45^{\circ}) = \sin(4$

3. You are trying to compute the trig functions of an angle, call it β . You ask the local oracle for help. Rather than tell you about β , she tells you about $\alpha = \beta/2$ which is an angle in quadrant 1. Specifically, she tells you that $\sin(\alpha) = 4/5$. Using this information, find $\sin(\beta)$ and $\cos(\beta)$. [Hint: $\beta = 2\alpha$, and you probably want to first calculate $\cos(\alpha)$ before you calculate $\sin(2\alpha)$ and $\cos(2\alpha)$.]

$$\sin(\beta) = \frac{7}{25}$$

$$\cos(\beta) = \frac{7}{25}$$

$$\sin^{7} x + \cos^{7} x = 1$$

 $(\frac{4}{5})^{2} + \cos^{2} x = 1$
 $\cos^{7} x = 1 - \frac{16}{25} = \frac{9}{25}$
 $\cos^{7} x = 1 - \frac{16}{25} = \frac{9}{25}$

B=7d,

$$=\frac{9}{25}-\frac{16}{25}=-\frac{7}{25}$$