MATH 321: HOMEWORK 3 SOLUTION

Problem 4 (Exercise 3.12 from the textbook). Prove that a positive integer is square-free if and only if all the exponents in its prime factorization are 1.

Solution. I prove both directions by contrapositive.

 (\Rightarrow) Consider a positive integer n and suppose that there is a prime p in its prime factorization which has an exponent m > 1. Then, n is a multiple of p^m which in turn is a multiple of p^2 . So n is not square-free.

(\Leftarrow) Suppose that *n* is not square-free. That is, $n = a^2 b$ for some integers a > 1 and *b*. Suppose *p* is in the prime factorization of *a*, with some exponent *m*. And let ℓ be the largest integer so that p^{ℓ} divides *b*. (Possibly $\ell = 0$, which happens when *p* does not divide *b*.) Then, $p^{2m+\ell}$ appears in the prime factorization of *n*. So *n* has a prime in its factorization whose exponent is not 1.