
SOLUTIONS TO MATH 321 MIDTERM

1. When roots of integers are rational (60 points total)

Problem 1 (5 points). Prove that if n is a perfect k-power then k
√
n is rational.

Solution. Suppose n = ak for an integer a. Then k
√
n = a is rational. �

Problem 2 (15 points). Prove that if ak is a multiple of pr, where a, k, and r are positive integers and p
is prime, then a is a multiple of p.

Solution. Suppose ak is a multiple of pr. Then, ak is a multiple of p. By Euclid’s lemma a is a multiple of
p. �

Problem 3 (15 points). Suppose p is prime and r < k are positive integers. Prove that k
√
pr is irrational.

Use this to conclude that k
√
pm is irrational if m is not a multiple of k.

Solution. Suppose toward a contradiction that k
√
pr is rational. Then, we can write k

√
pr = a/b, where a and

b have no common factors. Some algebra gives ak = prbk. That is, ak is a multiple of pr. By the previous
problem, we can conclude that a is a multiple of p. That is, a = np for some integer n. Substituting this in
we get

nkpk = prbk

nkpk−rbk.

Because r < k we have that pk−r is a positive power of p. So we can apply the previous problem again to
conclude that b is a multiple of p. Thus, a and b have p as a common factor. This contradicts that they
have no common factors, completing the argument that k

√
pr is irrational.

For the general case, use the Euclidean division lemma to write m = qk + r, where 0 < r < k. We know
that 0 < r because m is not a multiple of k. Then,

k
√
pm = k

√
pqk · pr = pq k

√
pr

is a product of a nonzero integer and an irrational number. By problem 1 of homework 2, we conclude it is
irrational. �

Problem 4 (20 points). Suppose p and q are primes, and k, m, and n are positive integers so that either
m is a not a multiple of k or n is not a multiple of k. Prove that k

√
pmqn is irrational.

Solution. Without loss of generality suppose that m is not a multiple of k. If n is a multiple of k, then
k
√
pmqn = k

√
pm · k

√
qn is a product of an irrational number and an integer, hence irrational. Now consider

the other case, where n is not a multiple of k. Observe that it suffices to prove the case where m,n < k, as
otherwise we can use the same trick as from the previous problem to write k

√
pmqn as a product of a nonzero

integer and a kth root where the exponents inside are both less than k.
Suppose toward a contradiction that k

√
pmqn = a/b, where a and b have no common factors. Rewrite this

equation as ak = bkpmqn. Then a is a multiple of both p and q, by Problem 2. Since p and q are distinct
primes, a is a multiple of pq. Write a = pqc for some integer c. Substituting this in gives

pkqkck = bkpmqn

pk−mqk−nck = bk.

Both pk−m and qk−n are positive powers of their prime base, by the assumption that m,n < k. Again
applying Problem 2 we get that b is a multiple of both p and q. So pq is a common factor of a and b,
contradicting that they have no common factors. �
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Problem 5 (Extra credit, up to +5). Suppose p1, p2, . . . , p` is a list of distinct primes, and that k,m1,m2, . . . ,m`

are positive integers so that at least one mi is not a multiple of k. Prove that

k

√
pm1
1 pm2

2 · · · p
m`

`

is irrational.

Solution. Like with the previous problem, we can reduce this to the case where each mi < k. Suppose
toward a contradiction that

k

√
pm1
1 pm2

2 · · · p
m`

` =
a

b
for integers a and b with no common factors. Then, we get

ak = bkpm1
1 pm2

2 · · · p
m`

` .

By Problem 2, a is a multiple of pi for each i. Since the pi are distinct primes, we get that a is a multiple
of p1p2 · · · p`, write a = p1p2 · · · p`c. Substituting and rearranging similar to the previous problem gives

bk = ckpk−m1
1 pk−m2

2 · · · pk−m`

` .

Each of the exponents on the right is positive, since k > mi for each i. So again using Problem 2 we get
that b is a multiple of each pi, contradicting that a and b have no common factors. �

Problem 6 (5 points). Explain how the previous problems together constitute a proof of the theorem.

Theorem. k
√
n is rational if and only if n is a perfect k-power, where n is a perfect k-power if there is an

integer a so that n = ak.

Solution. Problem 1 establishes the backward direction of the if and only if. For the forward direction, if
n is not a perfect k power then, applying the fundamental theorem of arithmetic, n = pm1

1 · · · p
m2
2 · · · p

m`

`

for primes pi where at least one exponent mi is not a multiple of k. Problem 5 then establishes that k
√
n is

irrational. �

2. Induction proofs (40 points total)

Problem 7 (20 points). Let fn denote the n-th Fibonacci number. Prove that, for n > 0,

fn−1fn+1 − fn
2 = (−1)n.

Solution. The base case n = 1 is the equation 0 · 1− 12 = −1. For the inductive step, fix n and assume that
fn−1fn+1 − fn

2 = (−1)n. Then,

fnfn+2 − fn+1
2 = fn(fn + fn+1)− fn+1

2

= fn
2 − fn+1(fn+1 − fn)

= fn
2 − fn+1fn−1

= −(−1)n

= (−1)n+1. �

Problem 8 (20 points). Suppose you have finitely many real numbers a1, a2, . . . , an. Prove that

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|.

Solution. First, we check that |a + b| ≤ |a| + |b|. We do this by cases. First consider the case where a and
b are both positive. Then the inequality becomes a + b ≤ a + b, which is obviously true. Next consider
the case where a and b are both negative. Then, the inequality becomes −(a + b) ≤ −a − b which is also
obviously true. Finally, consider the case where one is positive and one is negative. Then either |a+ b| < |a|
or |a + b| < |b|, depending on which has the larger magnitude. Thus, |a + b| < |a|+ |b|, as desired.

With this fact, we are ready to prove this result by induction. The base case n = 1 is the trivial inequality
|a1| ≤ |a1|. For the inductive step fix n and suppose |A| ≤ |a1|+ · · ·+ |an|, where A = a1 + · · · an. Then, by
the previous paragraph,

|A + an+1| ≤ |A|+ |an+1| ≤ |a1|+ · · ·+ |an|+ |an+1|. �
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Problem 9 (20 points). Suppose that x is a real number satisfying that x + 1
x is an integer. Prove that

xn +
1

xn

is an integer for every natural number n.

Solution. We check the first two cases as base cases. The base case n = 0 gives xn + 1
xn = 1 + 1 = 2 is an

integer and the base case n = 1 is true by assumption. Now fix n > 0 and suppose xn + 1
xn and xn−1 + 1

xn−1

are integers. Then (
xn +

1

xn

)(
x +

1

x

)
= xn+1 + xn−1 +

1

xn−1
+

1

xn+1

is also an integer. Since, by inductive hypothesis, xn−1 + 1
xn−1 is an integer, we conclude that xn+1 + 1

xn+1

is also an integer. �


