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Objects in mathematics

In mathematics, we are interested in many kinds of objects

Numbers, sets, graphs, trees, . . .

We don’t just want to talk about individual objects, we want to talk
about what we can do with them and how they relate

2 + 3 > 4− 1

N ⊆ R
18 is a multiple of 2

These functions and relations are themselves objects of mathematical
study.
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Relations

Consider the relation “a divides b”, where a
and b are natural numbers. Let’s write this as

a | b.

One way we can think about this relation is in
terms of its definition: a | b iff there is an
integer k so that ak = b. This is the intension
of the relation, telling us under what conditions
two objects are related in this way.

Another way we can think of it is in terms of
its extension, the information about which
objects are related in this way. This amounts
to talking about the set of ordered pairs
(a, b) ∈ N2 so that a | b.

The standard in mathematics is to take the
extension of a relation as the definition of
relations.

A binary relation on a set A is a subset of
A2, the set of ordered pairs from A.

If ? is a relation on A, then a ? b just
means (a, b) ∈ ?.

(You can talk about relations between more than

two objects, but binary relations are used the most.)
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Some examples

< on R

≤ on R
= on R
6= on R
⊆ on P(N), the set of subsets of
N
≡ mod 3 on Z (that is, a and
b have the same remainder when
divided by 3)
This is called equivalence
modulo 3.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Relations and functions Spring 2021 4 / 13



Some examples

< on R
≤ on R
= on R

6= on R
⊆ on P(N), the set of subsets of
N
≡ mod 3 on Z (that is, a and
b have the same remainder when
divided by 3)
This is called equivalence
modulo 3.
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Some properties a relation can have

Let ? be a binary relation on A.

? is reflexive if a ? a for all a ∈ A.

? is symmetric if a ? b implies b ? a for all
a, b ∈ A.

? is transitive if a ? b and b ? c implies
a ? c for all a, b, c ∈ A.

< on R
≤ on R
= on R
6= on R
⊆ on P(N)

≡ mod 3 on Z
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Reflexivity, symmetry, and transitivity

Theorem

No combination of reflexivity, symmetry, and
transitive implies the other. For each of the
eight possible combinations of which properties
hold, there is a binary relation which has
exactly those properties.

This theorem is giving existential statements,
so to prove it we just have to provide an
example for each of the eight cases.

(RST) We checked earlier that = on R
has all three properties.

(RT) We checked earlier that ≤ on R is
reflexive and transitive but not symmetric.

(T) We checked earlier that < on R is
transitive but neither reflexive nor
symmetric.

(S) We checked earlier that 6= on R is
symmetric but neither reflexive nor
transitive.

So we just need to provide examples for the
remaining four cases.

(∅)
(R)

(RS)

(ST)
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Reflexivity, symmetry, and transitivity

Theorem

No combination of reflexivity, symmetry, and
transitive implies the other. For each of the
eight possible combinations of which properties
hold, there is a binary relation which has
exactly those properties.

(∅) Consider the relation ? on N defined as
a ? b iff a = 0 and b = 1. This relation is
neither reflexive, symmetric, nor transitive.

(R) Consider the relation ∗ on Z defined
as a ∗ b iff either b = a or b = a + 1. This
is reflexive but neither symmetric nor
transitive.

(RS) Consider the relation † on Z defined
as a † b iff |a− b| ≤ 1. This relation is
reflexive and symmetric but not transitive.

(ST) Consider the empty relation on a
(nonempty) set A: a and b are never
related. This relation is vacuously
symmetric and transitive, but not reflexive.

We have examples for all eight cases,
completing the proof of the theorem.
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Closures of a relation

Let ? be a relation on a set A. We can add
new instances to ? to make it satisfy these
properties.

The reflexive closure of ? is the smallest
reflexive relation on A which contains ?,
i.e. as a subset.

The symmetric closure of ? is the smallest
symmetric relation on A which contains ?.

The transitive closure of ? is the smallest
transitive relation on A which contains ?.

The reflexive symmetric, reflexive transitive,
symmetric transitive, and reflexive symmetric
transitive closures are defined similarly, in the
obvious manner.

Examples:

What is the reflexive closure of < on R?

What is the symmetric closure of < on R?

What is the transitive closure of < on R?

What is the reflexive closure of 6= on R?

What is the transitive closure of 6= on R?

What is the reflexive closure of the empty
relation on R?
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Another way to define closures

Let † be a binary relation on a set A.

The reflexive closure of † is † ∪=. That
is, we add in all pairs of the form (a, a) to
? to get its reflexive closure.

The symmetric closure of † is † ∪ †, where

†is the opposite relation to †. Namely, †

is defined as a †b iff b † a.

Can you describe the reflexive symmetric
closure of †?

The transitive closure is a trickier. Trying to
close off in one step creates new issues to fix.

Consider the differ by ≤ 1 relation on Z: a † b
iff |a− b| ≤ 1.

Instead, we have to close off † in a recursive
process with infinitely many steps.

Start with †0 = †.
Given †n define †n+1 as:

†n+1 = †n ∪ {(a, c) ∈ A2 : a †n b †n c
for some b ∈ A}.

Then the transitive closure of † is

†̄ =
∞⋃
n=0

†n

= †0 ∪ †1 ∪ †2 ∪ · · ·
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Instead, we have to close off † in a recursive
process with infinitely many steps.

Start with †0 = †.
Given †n define †n+1 as:

†n+1 = †n ∪ {(a, c) ∈ A2 : a †n b †n c
for some b ∈ A}.

Then the transitive closure of † is

†̄ =
∞⋃
n=0

†n

= †0 ∪ †1 ∪ †2 ∪ · · ·
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for some b ∈ A}.

Then the transitive closure of † is

†̄ =
∞⋃
n=0

†n

= †0 ∪ †1 ∪ †2 ∪ · · ·

To see this is really the transitive closure, we
have to check three things: (1) †̄ contains †,
(2) †̄ is transitive, and (3) any transitive
relation which contains † also contains †̄.

(†̄ contains †) True by construction.

(†̄ is transitive) Suppose a †̄ b †̄ c . We
want to see a †̄ c . By definition of †̄, there
is large enough n so that a †n b †n c . So
then a †n+1 c, and thus a †̄ c .

(†̄ is contained in any transitive relation
which contains †) Observe that, by the
definition of †̄, it is enough to prove that
if a transitive relation extends † it
contains each †n. Let’s do this induction.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Relations and functions Spring 2021 10 / 13



Looking more closely at transitive closures

Instead, we have to close off † in a recursive
process with infinitely many steps.

Start with †0 = †.
Given †n define †n+1 as:

†n+1 = †n ∪ {(a, c) ∈ A2 : a †n b †n c
for some b ∈ A}.

Then the transitive closure of † is

†̄ =
∞⋃
n=0

†n

= †0 ∪ †1 ∪ †2 ∪ · · ·

To see this is really the transitive closure, we
have to check three things: (1) †̄ contains †,
(2) †̄ is transitive, and (3) any transitive
relation which contains † also contains †̄.

(†̄ contains †) True by construction.

(†̄ is transitive) Suppose a †̄ b †̄ c . We
want to see a †̄ c . By definition of †̄, there
is large enough n so that a †n b †n c . So
then a †n+1 c, and thus a †̄ c .

(†̄ is contained in any transitive relation
which contains †) Observe that, by the
definition of †̄, it is enough to prove that
if a transitive relation extends † it
contains each †n. Let’s do this induction.
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Instead, we have to close off † in a recursive
process with infinitely many steps.

Start with †0 = †.
Given †n define †n+1 as:

†n+1 = †n ∪ {(a, c) ∈ A2 : a †n b †n c
for some b ∈ A}.

Then the transitive closure of † is

†̄ =
∞⋃
n=0

†n

= †0 ∪ †1 ∪ †2 ∪ · · ·

Consider a transitive relation ? which contains
†. That is, if a † b then a ? b and ? is
transitive.

(Base case) ? contains †0 because †0 is
just †, and this is true by assumption.

(Inductive step) Assume that ? contains
†n. We want to see that if a †n+1 c then
a ? c . By definition, a †n+1 c if either
a †n c or there is b so that a †n b †n c .

Case 1 (a †n c): Then a ? c by inductive
hypothesis.
Case 2 (a †n b †n c): By inductive
hypothesis, a ? b ? c . Because ? is
transitive, we conclude a ? c .

So ? contains †̄.
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Equivalence relations

Equivalence relations are a kind of relation
which express that objects are the same, or
should be treated equivalently.

A binary relation ≡ on A is an equivalence
relation if ≡ is reflexive, symmetric, and
transitive.

Some examples:

=, on any set.
This is the most important example. You
should think of equivalence relations as
generalizing the equality relation.

The indiscrete relation on any set, where
any two elements are related.

Fix an integer n > 1. Then the
equivalence modulo n relation, where
a ≡ b mod n iff a and b have the same
remainder when divided by n.

The rearrangement relation on finite lists
of integers: two lists are equivalent if they
are rearrangements of each other.
This is the equivalence relation used in the
statement of the fundamental theorem of
arithmetic: when we proved that any two
prime factorizations of n must be the
same, what we meant is that the two lists
were related in this way.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Relations and functions Spring 2021 12 / 13



Equivalence relations

Equivalence relations are a kind of relation
which express that objects are the same, or
should be treated equivalently.

A binary relation ≡ on A is an equivalence
relation if ≡ is reflexive, symmetric, and
transitive.

Some examples:

=, on any set.

This is the most important example. You
should think of equivalence relations as
generalizing the equality relation.

The indiscrete relation on any set, where
any two elements are related.

Fix an integer n > 1. Then the
equivalence modulo n relation, where
a ≡ b mod n iff a and b have the same
remainder when divided by n.

The rearrangement relation on finite lists
of integers: two lists are equivalent if they
are rearrangements of each other.
This is the equivalence relation used in the
statement of the fundamental theorem of
arithmetic: when we proved that any two
prime factorizations of n must be the
same, what we meant is that the two lists
were related in this way.
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Equivalence classes and partitions

Let ∼ be an equivalence relation on A. Then
∼ partitions A into equivalence classes.

Consider a ∈ A. The ∼-equivalence class
for a is:

[a] = [a]∼ = {b ∈ A : a ∼ b}.

A partition of A is a family of nonempty
pairwise disjoint subsets of A whose union
is all of A.

Pairwise disjoint means that if we take
X 6= Y from the family, then X ∩ Y = ∅

Each [a] is nonempty.

Because a ∈ [a], because a ∼ a.

If [a] ∩ [b] 6= ∅, then [a] = [b].

Fix c ∈ [a] ∩ [b]. Consider x ∈ [a]. Then
a ∼ x , a ∼ c , and b ∼ c . By symmetry,
x ∼ a and c ∼ b. By transitivity, x ∼ b,
and so b ∼ x . We’ve seen that [a] ⊆ [b].
An identical argument proves [b] ⊆ [a],
establishing their equality.

The union of the [a] is all of A

Because a ∈ [a] for each a ∈ A.

Notation: Mathematicians write A/∼ for the family of ∼-equivalence classes.
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Notation: Mathematicians write A/∼ for the family of ∼-equivalence classes.
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Equivalence classes and partitions

Let ∼ be an equivalence relation on A. Then
∼ partitions A into equivalence classes.

Consider a ∈ A. The ∼-equivalence class
for a is:

[a] = [a]∼ = {b ∈ A : a ∼ b}.

A partition of A is a family of nonempty
pairwise disjoint subsets of A whose union
is all of A.
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