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Orders

Given a set X , we may be able to compare
elements of X , e.g. by size or position.

Let’s formalize and abstract this idea.

A binary relation ≤ on a set X is an order
or partial order if ≤ is reflexive, transitive,
and antisymmetric.

That is, x ≤ x for all x ∈ X , x ≤ y ≤ z
implies x ≤ z , and x ≤ y and y ≤ x
implies x = y .

< is a strict order if it is irreflexive,
transitive, and antisymmetric.

That is, x < x is never true, x ≤ y ≤ z
implies x ≤ z , and x ≤ y and y ≤ x
implies x = y .

Also call orders nonstrict to clearly distinguish.

You can transfer from nonstrict to strict orders
and vice versa:

If ≤ is a nonstrict order, then < is a strict
order, where x < y if x ≤ y and x 6= y .

If ≺ is a strict order, then � is a nonstrict
order, where x � y if x ≺ y or x = y .

Notation:

Use symbols like ≤, �, ⊆, v to denote
orders.

Write the corresponding strict order as
e.g. < or �.

Write it backwards, e.g. ≥, to denote the
opposite order: x ≥ y iff y ≤ x .
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Examples

⊆ on P(N)

≤ on R
| on N
The subsequence relation v on N∗
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Minimal and least elements

Consider an ordered set (X , <).

m ∈ X is a minimal element if there is
nothing smaller than it. In symbols: if
there is no x ∈ X with x < m.

` ∈ X is a least element if it is smaller
than everything else. In symbols: if ` ≤ x
for all x ∈ X .

The dual notions are maximal and greatest
elements.

M ∈ X is a maximal element if there is
nothing larger than it.

G ∈ X is a greatest element if it is larger
than everything else.

These are minimal/least in the opposite order.

Any least element is minimal.

If there were x < ` then it would be false that
` ≤ x , because then we would have ` ≤ x < `
and so ` < ` and so ` 6= `.

If ` is a least element it is the only
minimal element, and thus also the only
least element.

Consider m ∈ X . Because ` ≤ m the only way
m can be minimal is if m = `.

Being the unique minimal element doesn’t
imply being least.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Order theory Spring 2021 4 / 12



Minimal and least elements

Consider an ordered set (X , <).

m ∈ X is a minimal element if there is
nothing smaller than it. In symbols: if
there is no x ∈ X with x < m.

` ∈ X is a least element if it is smaller
than everything else. In symbols: if ` ≤ x
for all x ∈ X .

The dual notions are maximal and greatest
elements.

M ∈ X is a maximal element if there is
nothing larger than it.

G ∈ X is a greatest element if it is larger
than everything else.

These are minimal/least in the opposite order.

Any least element is minimal.

If there were x < ` then it would be false that
` ≤ x , because then we would have ` ≤ x < `
and so ` < ` and so ` 6= `.

If ` is a least element it is the only
minimal element, and thus also the only
least element.

Consider m ∈ X . Because ` ≤ m the only way
m can be minimal is if m = `.

Being the unique minimal element doesn’t
imply being least.
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A unique minimal element which isn’t least
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Linear orders

An order ≤ on a set X is a linear order or total
order if it satisfies the trichotomy property:

For any points x , y ∈ X , either x < y ,
x = y , or x > y .

In a linear order, an element is least iff it
is minimal.

We already saw least ⇒ minimal in a more
general context, so let’s see the other direction.
Suppose m is minimal, consider x ∈ X . By
trichotomy, either x < m or m ≤ x . We know
x < m cannot be, so it must be m ≤ x .
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Pre-orders

A relation . on a set X is a pre-order if it is
reflexive and transitive.

That is, it’s like an order except we don’t
require anti-symmetry.

Outside of maths, pre-orders get used for
preference theory, where a . b means “b is at
least as preferable as a”.

For example, my preferences for ice cream
might include: chocolate . mint .
pistachio . chocolate.

It seems like I’m saying I like these all the
same, and indeed we can formalize this.

Given a pre-order ., define a relation ∼
as x ∼ y if x . y . x . This is an
equivalence relation.

Moreover, the relation ≤ defined on the
∼-equivalence classes as [x ] ≤ [y ] if x . y
is well-defined and is a partial order.

For example, we compared sizes of sets: A . B
if there is a one-to-one function from A to B
and A ≈ B if there is a bijection from A to B.
The Cantor–Schröder–Bernstein theorem says
A ≈ B iff A . B . A. Going from this
pre-order to the order on the equivalence
classes goes from comparing individual sets to
comparing sizes of sets.
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The Cantor–Schröder–Bernstein theorem says
A ≈ B iff A . B . A. Going from this
pre-order to the order on the equivalence
classes goes from comparing individual sets to
comparing sizes of sets.
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When are two orders the same?

Consider the following two orders:

A < B < C

1 < 2 < 3

Clearly these are the same, I just relabeled the
elements with new names.

Can we get a general notion of when two
orders are the same?

Let (X , <X ) and (Y , <Y ) be orders.

An isomorphsim from X to Y is a
bijection π : X → Y so that a <X b iff
π(a) <Y π(b) for all a, b ∈ X .

Two orders are isomorphic if there is an
isomorphism between them.

Some examples:

N versus {evens}
R versus (−π/2, π/2)
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Order theory Spring 2021 8 / 12



When are two orders the same?

Consider the following two orders:

A < B < C

1 < 2 < 3

Clearly these are the same, I just relabeled the
elements with new names.

Can we get a general notion of when two
orders are the same?

Let (X , <X ) and (Y , <Y ) be orders.

An isomorphsim from X to Y is a
bijection π : X → Y so that a <X b iff
π(a) <Y π(b) for all a, b ∈ X .

Two orders are isomorphic if there is an
isomorphism between them.

Some examples:

N versus {evens}
R versus (−π/2, π/2)

[0, 1] versus [0, 2]

Observe that the isomorphisms here don’t
preserve any structure beyond the order
information—e.g. algebraic information is lost.

Given any notion of a mathematical structure,
there’s a corresponding notion of
isomorphism—a bijection which preserves all
the structure.
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A more difficult example of isomorphism

Pfin(N) denotes the set of finite sets of
natural numbers.

S denotes the set of positive square-free
integers, those whose prime factorizations
only have 1 as an exponent.

Theorem

Pfin(N) under ⊆ and S under divisibility | are
isomorphic.

Here’s the idea: given n ∈ S , associate to n its
set of prime factors. Because n is square-free,
this is a one-to-one map from S to Pfin(P), the
set of finite sets of primes.

Call this correspondence π : S → Pfin(P).

Claim: For n,m ∈ S , n | m iff
π(n) ⊆ π(m).

n divides m iff each prime in n’s prime
factorization appear in m’s prime factorization,
but that’s just saying π(n) ⊆ π(m).

Claim: π is onto.

Let A be a finite set of primes. If n is the
product of the primes in A then π(n) = A.

Claim: Pfin(P) is isomorphic to Pfin(N).

Any bijection P → N gives rise to an
isomorphism Pfin(P)→ Pfin(N).
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Another isomorphism result

Consider a linear order (X , <).

X is dense if given any x < z from X
there y ∈ X with x < y < z .

X is endless if has neither a maximum nor
a minimum.

Theorem (Cantor)

Any two countable endless dense linear orders
are isomorphic. In particular, every countable
endless dense linear order is isomorphic to
(Q, <).
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A back-and-forth proof for Cantor’s theorem

Any two conutable endless dense linear
orders are isomorphic.

Suppose (X , <X ) and (Y , <Y ) are countable
EDLOs.

Enumerate X and Y as, respectively

x0, x1, . . . , xn, . . .

y0, y1, . . . , ym, . . .

We inductively build an isomorphism π.

(Base case) Set π(x0) = y0.

(Successor step) We do a forth and a back
step, extending the finite piece of π we have
built so far.

(Forth) Look at the first xn, according to the
enumeration, which we haven’t handled yet.
Map it to the first ym which fits in with the
π(xi ) the same as xn fits in with the xi we’ve
already handled.

(Back) Look at the first ym which we haven’t
handled yet. Look for the first xn which fits in
with the xi we’ve already handled the same as
ym fits in wiith the π(xi ). Set π(xn) = ym.

After countable many steps we’ve built π. By
construction, π is injective and preserves the
order. The forth step ensures domπ = X . And
the back step ensures ranπ = Y . So π is the
desired isomorphism.
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π(xi ) the same as xn fits in with the xi we’ve
already handled.

(Back) Look at the first ym which we haven’t
handled yet. Look for the first xn which fits in
with the xi we’ve already handled the same as
ym fits in wiith the π(xi ). Set π(xn) = ym.

After countable many steps we’ve built π. By
construction, π is injective and preserves the
order. The forth step ensures domπ = X . And
the back step ensures ranπ = Y . So π is the
desired isomorphism.
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A related theorem

Theorem (Cantor)

Every countable linear order embeds into
(Q, <). That is, if (X , <X ) is a countable
linear order then (X , <X ) is isomorphic to a
suborder of (Q, <).

Proof sketch: Like the back-and-forth
argument, except we only need the forth step
to build an embedding π : X → Q.

See page 169 in the textbook for the full proof.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Order theory Spring 2021 12 / 12


