Math 321: Order theory

Kameryn J Williams

University of Hawai'i at Mānoa

Spring 2021

K Williams (U. Hawai'i @ Mānoa)

Э Spring 2021 1 / 12

Sac

メロト メポト メヨト メヨ

Given a set X, we may be able to compare elements of X, e.g. by size or position. Let's formalize and abstract this idea.

Sac

Image: A math a math

Given a set X, we may be able to compare elements of X, e.g. by size or position.

Let's formalize and abstract this idea.

- A binary relation ≤ on a set X is an order or partial order if ≤ is reflexive, transitive, and antisymmetric.
 - That is, x ≤ x for all x ∈ X, x ≤ y ≤ z implies x ≤ z, and x ≤ y and y ≤ x implies x = y.

Given a set X, we may be able to compare elements of X, e.g. by size or position.

Let's formalize and abstract this idea.

- A binary relation ≤ on a set X is an order or partial order if ≤ is reflexive, transitive, and antisymmetric.
 - That is, $x \le x$ for all $x \in X$, $x \le y \le z$ implies $x \le z$, and $x \le y$ and $y \le x$ implies x = y.
- < is a strict order if it is irreflexive, transitive, and antisymmetric.
 - That is, x < x is never true, x ≤ y ≤ z implies x ≤ z, and x ≤ y and y ≤ x implies x = y.

Given a set X, we may be able to compare elements of X, e.g. by size or position.

Let's formalize and abstract this idea.

- A binary relation ≤ on a set X is an order or partial order if ≤ is reflexive, transitive, and antisymmetric.
 - That is, $x \le x$ for all $x \in X$, $x \le y \le z$ implies $x \le z$, and $x \le y$ and $y \le x$ implies x = y.
- < is a strict order if it is irreflexive, transitive, and antisymmetric.
 - That is, x < x is never true, $x \le y \le z$ implies $x \le z$, and $x \le y$ and $y \le x$ implies x = y.

Also call orders nonstrict to clearly distinguish.

Given a set X, we may be able to compare elements of X, e.g. by size or position.

Let's formalize and abstract this idea.

- A binary relation ≤ on a set X is an order or partial order if ≤ is reflexive, transitive, and antisymmetric.
 - That is, $x \le x$ for all $x \in X$, $x \le y \le z$ implies $x \le z$, and $x \le y$ and $y \le x$ implies x = y.
- < is a strict order if it is irreflexive, transitive, and antisymmetric.
 - That is, x < x is never true, x ≤ y ≤ z implies x ≤ z, and x ≤ y and y ≤ x implies x = y.

Also call orders nonstrict to clearly distinguish.

You can transfer from nonstrict to strict orders and vice versa:

- If \leq is a nonstrict order, then < is a strict order, where x < y if $x \leq y$ and $x \neq y$.
- If ≺ is a strict order, then ≤ is a nonstrict order, where x ≤ y if x ≺ y or x = y.

< □ > < 同

Given a set X, we may be able to compare elements of X, e.g. by size or position.

Let's formalize and abstract this idea.

- A binary relation ≤ on a set X is an order or partial order if ≤ is reflexive, transitive, and antisymmetric.
 - That is, $x \le x$ for all $x \in X$, $x \le y \le z$ implies $x \le z$, and $x \le y$ and $y \le x$ implies x = y.
- < is a strict order if it is irreflexive, transitive, and antisymmetric.
 - That is, x < x is never true, $x \le y \le z$ implies $x \le z$, and $x \le y$ and $y \le x$ implies x = y.

Also call orders nonstrict to clearly distinguish.

You can transfer from nonstrict to strict orders and vice versa:

- If \leq is a nonstrict order, then < is a strict order, where x < y if $x \leq y$ and $x \neq y$.
- If ≺ is a strict order, then ≤ is a nonstrict order, where x ≤ y if x ≺ y or x = y.

Notation:

- Use symbols like \leq , \leq , \subseteq , \subseteq to denote orders.
- Write the corresponding strict order as e.g. < or $\lneq.$
- Write it backwards, e.g. ≥, to denote the opposite order: x ≥ y iff y ≤ x.

K Williams (U. Hawai'i @ Mānoa)

Math 321: Order theory

・ロト・日本・ キャー ヨー うらぐ

Spring 2021 3 / 12

- \subseteq on $\mathcal{P}(\mathbb{N})$
- ullet \leq on $\mathbb R$

590

イロト イポト イヨト イヨト

- \subseteq on $\mathcal{P}(\mathbb{N})$
- ullet \leq on ${\mathbb R}$
- | on \mathbb{N}

K Williams (U. Hawai'i @ Mānoa)

590

イロト イポト イヨト イヨト

- \subseteq on $\mathcal{P}(\mathbb{N})$
- \leq on \mathbb{R}
- | on \mathbb{N}
- The subsequence relation \sqsubseteq on \mathbb{N}^*

Sac

メロト スポト メヨト メヨ

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.

- Consider an ordered set (X, <).
 - m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
 - ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.

The dual notions are maximal and greatest elements.

- *M* ∈ *X* is a maximal element if there is nothing larger than it.
- G ∈ X is a greatest element if it is larger than everything else.

These are minimal/least in the opposite order.

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.

The dual notions are maximal and greatest elements.

- *M* ∈ *X* is a maximal element if there is nothing larger than it.
- *G* ∈ *X* is a greatest element if it is larger than everything else.

These are minimal/least in the opposite order.

• Any least element is minimal.

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.

The dual notions are maximal and greatest elements.

- *M* ∈ *X* is a maximal element if there is nothing larger than it.
- G ∈ X is a greatest element if it is larger than everything else.

These are minimal/least in the opposite order.

• Any least element is minimal.

If there were $x < \ell$ then it would be false that $\ell \leq x$,

Spring 2021 4 / 12

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.
- The dual notions are maximal and greatest elements.
 - *M* ∈ *X* is a maximal element if there is nothing larger than it.
 - G ∈ X is a greatest element if it is larger than everything else.

These are minimal/least in the opposite order.

• Any least element is minimal.

If there were $x < \ell$ then it would be false that $\ell \le x$, because then we would have $\ell \le x < \ell$ and so $\ell < \ell$ and so $\ell \ne \ell$.

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.
- The dual notions are maximal and greatest elements.
 - *M* ∈ *X* is a maximal element if there is nothing larger than it.
 - G ∈ X is a greatest element if it is larger than everything else.

These are minimal/least in the opposite order.

• Any least element is minimal.

If there were $x < \ell$ then it would be false that $\ell \le x$, because then we would have $\ell \le x < \ell$ and so $\ell < \ell$ and so $\ell \ne \ell$.

 If ℓ is a least element it is the only minimal element, and thus also the only least element.

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.
- The dual notions are maximal and greatest elements.
 - *M* ∈ *X* is a maximal element if there is nothing larger than it.
 - G ∈ X is a greatest element if it is larger than everything else.

These are minimal/least in the opposite order.

Math 321: Order theory

• Any least element is minimal.

If there were $x < \ell$ then it would be false that $\ell \le x$, because then we would have $\ell \le x < \ell$ and so $\ell < \ell$ and so $\ell \ne \ell$.

 If ℓ is a least element it is the only minimal element, and thus also the only least element.

Consider $m \in X$. Because $\ell \leq m$ the only way m can be minimal is if $m = \ell$.

Consider an ordered set (X, <).

- m ∈ X is a minimal element if there is nothing smaller than it. In symbols: if there is no x ∈ X with x < m.
- ℓ ∈ X is a least element if it is smaller than everything else. In symbols: if ℓ ≤ x for all x ∈ X.
- The dual notions are maximal and greatest elements.
 - *M* ∈ *X* is a maximal element if there is nothing larger than it.
 - G ∈ X is a greatest element if it is larger than everything else.
- These are minimal/least in the opposite order.

Math 321: Order theory

• Any least element is minimal.

If there were $x < \ell$ then it would be false that $\ell \le x$, because then we would have $\ell \le x < \ell$ and so $\ell < \ell$ and so $\ell \ne \ell$.

• If ℓ is a least element it is the only minimal element, and thus also the only least element.

Consider $m \in X$. Because $\ell \leq m$ the only way m can be minimal is if $m = \ell$.

• Being the unique minimal element doesn't imply being least.

A unique minimal element which isn't least

K Williams (U. Hawai'i @ Mānoa)

Math 321: Order theory

・ロト・日本・ キャー ヨー うらぐ

Spring 2021 5 / 12

An order \leq on a set X is a linear order or total order if it satisfies the trichotomy property:

 For any points x, y ∈ X, either x < y, x = y, or x > y.

Image: A math a math

An order \leq on a set X is a linear order or total order if it satisfies the trichotomy property:

• For any points $x, y \in X$, either x < y, x = y, or x > y.

• In a linear order, an element is least iff it is minimal.

< □ > < 同

Linear orders

An order \leq on a set X is a linear order or total order if it satisfies the trichotomy property:

 For any points x, y ∈ X, either x < y, x = y, or x > y. • In a linear order, an element is least iff it is minimal.

We already saw least \Rightarrow minimal in a more general context, so let's see the other direction.

Linear orders

An order \leq on a set X is a linear order or total order if it satisfies the trichotomy property:

 For any points x, y ∈ X, either x < y, x = y, or x > y. • In a linear order, an element is least iff it is minimal.

We already saw least \Rightarrow minimal in a more general context, so let's see the other direction. Suppose *m* is minimal, consider $x \in X$. By trichotomy, either x < m or $m \le x$. We know x < m cannot be, so it must be $m \le x$.

A relation \lesssim on a set X is a pre-order if it is reflexive and transitive.

• That is, it's like an order except we don't require anti-symmetry.

Image: A math a math

A relation \leq on a set X is a pre-order if it is reflexive and transitive.

• That is, it's like an order except we don't require anti-symmetry.

Outside of maths, pre-orders get used for preference theory, where $a \lesssim b$ means "b is at least as preferable as a".

A relation \lesssim on a set X is a pre-order if it is reflexive and transitive.

• That is, it's like an order except we don't require anti-symmetry.

Outside of maths, pre-orders get used for preference theory, where $a \leq b$ means "b is at least as preferable as a".

• For example, my preferences for ice cream might include: chocolate \lesssim mint \lesssim pistachio \lesssim chocolate.

A relation \lesssim on a set X is a pre-order if it is reflexive and transitive.

• That is, it's like an order except we don't require anti-symmetry.

Outside of maths, pre-orders get used for preference theory, where $a \leq b$ means "b is at least as preferable as a".

• For example, my preferences for ice cream might include: chocolate \lesssim mint \lesssim pistachio \lesssim chocolate.

It seems like I'm saying I like these all the same, and indeed we can formalize this.

- A relation \lesssim on a set X is a pre-order if it is reflexive and transitive.
 - That is, it's like an order except we don't require anti-symmetry.
- Outside of maths, pre-orders get used for preference theory, where $a \leq b$ means "b is at least as preferable as a".
 - For example, my preferences for ice cream might include: chocolate \lesssim mint \lesssim pistachio \lesssim chocolate.
- It seems like I'm saying I like these all the same, and indeed we can formalize this.

 Given a pre-order ≤, define a relation ~ as x ~ y if x ≤ y ≤ x. This is an equivalence relation.

- A relation \lesssim on a set X is a pre-order if it is reflexive and transitive.
 - That is, it's like an order except we don't require anti-symmetry.
- Outside of maths, pre-orders get used for preference theory, where $a \leq b$ means "b is at least as preferable as a".
 - For example, my preferences for ice cream might include: chocolate \lesssim mint \lesssim pistachio \lesssim chocolate.
- It seems like I'm saying I like these all the same, and indeed we can formalize this.

- Given a pre-order ≤, define a relation ~ as x ~ y if x ≤ y ≤ x. This is an equivalence relation.
- Moreover, the relation ≤ defined on the ~-equivalence classes as [x] ≤ [y] if x ≲ y is well-defined and is a partial order.

- A relation \leq on a set X is a pre-order if it is reflexive and transitive.
 - That is, it's like an order except we don't require anti-symmetry.
- Outside of maths, pre-orders get used for preference theory, where $a \leq b$ means "b is at least as preferable as a".
 - For example, my preferences for ice cream might include: chocolate \lesssim mint \lesssim pistachio \lesssim chocolate.
- It seems like I'm saying I like these all the same, and indeed we can formalize this.

- Given a pre-order ≤, define a relation ~ as x ~ y if x ≤ y ≤ x. This is an equivalence relation.
- Moreover, the relation ≤ defined on the ~-equivalence classes as [x] ≤ [y] if x ≲ y is well-defined and is a partial order.

For example, we compared sizes of sets: $A \leq B$ if there is a one-to-one function from A to Band $A \approx B$ if there is a bijection from A to B. The Cantor–Schröder–Bernstein theorem says $A \approx B$ iff $A \leq B \leq A$. Going from this pre-order to the order on the equivalence classes goes from comparing individual sets to comparing sizes of sets.

Consider the following two orders:

- A < B < C
- 1 < 2 < 3

1

Sac

・ロト ・ 一下・ ・ ヨト

- *A* < *B* < *C*
- 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

< 口 > < 同

- *A* < *B* < *C*
- 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

Can we get a general notion of when two orders are the same?

- *A* < *B* < *C*
- 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

Can we get a general notion of when two orders are the same?

Let $(X, <_X)$ and $(Y, <_Y)$ be orders.

- An isomorphism from X to Y is a bijection π : X → Y so that a <_X b iff π(a) <_Y π(b) for all a, b ∈ X.
- Two orders are isomorphic if there is an isomorphism between them.

Consider the following two orders:

- *A* < *B* < *C*
- 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

- Can we get a general notion of when two orders are the same?
- Let $(X, <_X)$ and $(Y, <_Y)$ be orders.
 - An isomorphsim from X to Y is a bijection π : X → Y so that a <_X b iff π(a) <_Y π(b) for all a, b ∈ X.
 - Two orders are isomorphic if there is an isomorphism between them.

Some examples:

• \mathbb{N} versus {evens}

Consider the following two orders:

- *A* < *B* < *C*
- 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

- Can we get a general notion of when two orders are the same?
- Let $(X, <_X)$ and $(Y, <_Y)$ be orders.
 - An isomorphsim from X to Y is a bijection π : X → Y so that a <_X b iff π(a) <_Y π(b) for all a, b ∈ X.
 - Two orders are isomorphic if there is an isomorphism between them.

Some examples:

• \mathbb{N} versus {evens}

•
$$\mathbb R$$
 versus ($-\pi/2,\pi/2$)

Consider the following two orders:

- *A* < *B* < *C*
- 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

- Can we get a general notion of when two orders are the same?
- Let $(X, <_X)$ and $(Y, <_Y)$ be orders.
 - An isomorphsim from X to Y is a bijection π : X → Y so that a <_X b iff π(a) <_Y π(b) for all a, b ∈ X.
 - Two orders are isomorphic if there is an isomorphism between them.

Some examples:

- \mathbb{N} versus {evens}
- \mathbb{R} versus ($-\pi/2,\pi/2$)
- $\bullet~[0,1]$ versus [0,2]

• *A* < *B* < *C*

• 1 < 2 < 3

Clearly these are the same, I just relabeled the elements with new names.

Can we get a general notion of when two orders are the same?

Let $(X, <_X)$ and $(Y, <_Y)$ be orders.

- An isomorphsim from X to Y is a bijection π : X → Y so that a <_X b iff π(a) <_Y π(b) for all a, b ∈ X.
- Two orders are isomorphic if there is an isomorphism between them.

Some examples:

- \mathbb{N} versus {evens}
- $\mathbb R$ versus ($-\pi/2,\pi/2$)
- $\bullet~[0,1]$ versus [0,2]

Observe that the isomorphisms here don't preserve any structure beyond the order information—e.g. algebraic information is lost.

Given any notion of a mathematical structure, there's a corresponding notion of isomorphism—a bijection which preserves all the structure.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi : S \to \mathcal{P}_{fin}(P)$.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi: S \to \mathcal{P}_{fin}(P)$.

• Claim: For
$$n, m \in S$$
, $n \mid m$ iff $\pi(n) \subseteq \pi(m)$.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi: S \to \mathcal{P}_{fin}(P)$.

• Claim: For $n, m \in S$, $n \mid m$ iff $\pi(n) \subseteq \pi(m)$.

n divides *m* iff each prime in *n*'s prime factorization appear in *m*'s prime factorization, but that's just saying $\pi(n) \subseteq \pi(m)$.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi: S \to \mathcal{P}_{fin}(P)$.

• Claim: For $n, m \in S$, $n \mid m$ iff $\pi(n) \subseteq \pi(m)$.

n divides *m* iff each prime in *n*'s prime factorization appear in *m*'s prime factorization, but that's just saying $\pi(n) \subseteq \pi(m)$.

• Claim: π is onto.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi: S \to \mathcal{P}_{fin}(P)$.

• Claim: For $n, m \in S$, $n \mid m$ iff $\pi(n) \subseteq \pi(m)$.

n divides *m* iff each prime in *n*'s prime factorization appear in *m*'s prime factorization, but that's just saying $\pi(n) \subseteq \pi(m)$.

• Claim: π is onto.

Let A be a finite set of primes. If n is the product of the primes in A then $\pi(n) = A$.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi: S \to \mathcal{P}_{fin}(P)$.

• Claim: For $n, m \in S$, $n \mid m$ iff $\pi(n) \subseteq \pi(m)$.

n divides *m* iff each prime in *n*'s prime factorization appear in *m*'s prime factorization, but that's just saying $\pi(n) \subseteq \pi(m)$.

• Claim: π is onto.

Let A be a finite set of primes. If n is the product of the primes in A then $\pi(n) = A$.

• Claim: $\mathcal{P}_{fin}(P)$ is isomorphic to $\mathcal{P}_{fin}(\mathbb{N})$.

- *P*_{fin}(ℕ) denotes the set of *finite* sets of natural numbers.
- S denotes the set of positive square-free integers, those whose prime factorizations only have 1 as an exponent.

Theorem

 $\mathcal{P}_{fin}(\mathbb{N})$ under \subseteq and S under divisibility | are isomorphic.

Here's the idea: given $n \in S$, associate to n its set of prime factors. Because n is square-free, this is a one-to-one map from S to $\mathcal{P}_{fin}(P)$, the set of finite sets of primes.

Call this correspondence $\pi: S \to \mathcal{P}_{fin}(P)$.

• Claim: For $n, m \in S$, $n \mid m$ iff $\pi(n) \subseteq \pi(m)$.

n divides *m* iff each prime in *n*'s prime factorization appear in *m*'s prime factorization, but that's just saying $\pi(n) \subseteq \pi(m)$.

• Claim: π is onto.

Let A be a finite set of primes. If n is the product of the primes in A then $\pi(n) = A$.

• Claim: $\mathcal{P}_{fin}(P)$ is isomorphic to $\mathcal{P}_{fin}(\mathbb{N})$. Any bijection $P \to \mathbb{N}$ gives rise to an isomorphism $\mathcal{P}_{fin}(P) \to \mathcal{P}_{fin}(\mathbb{N})$.

Another isomorphism result

Consider a linear order (X, <).

- X is dense if given any x < z from X there y ∈ X with x < y < z.
- X is endless if has neither a maximum nor a minimum.

< □ > < 同

Another isomorphism result

Consider a linear order (X, <).

- X is dense if given any x < z from X there y ∈ X with x < y < z.
- X is endless if has neither a maximum nor a minimum.

Theorem (Cantor)

Any two countable endless dense linear orders are isomorphic. In particular, every countable endless dense linear order is isomorphic to $(\mathbb{Q}, <)$.

• Any two conutable endless dense linear orders are isomorphic.

Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.

- Any two conutable endless dense linear orders are isomorphic.
- Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.
- Enumerate X and Y as, respectively
 - $x_0, x_1, \ldots, x_n, \ldots$
 - $y_0, y_1, \ldots, y_m, \ldots$
- We inductively build an isomorphism π .

• Any two conutable endless dense linear orders are isomorphic.

Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.

Enumerate X and Y as, respectively

- $x_0, x_1, \ldots, x_n, \ldots$
- $y_0, y_1, \ldots, y_m, \ldots$

We inductively build an isomorphism π .

(Base case) Set $\pi(x_0) = y_0$.

• Any two conutable endless dense linear orders are isomorphic.

Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.

Enumerate X and Y as, respectively

- $x_0, x_1, \ldots, x_n, \ldots$
- $y_0, y_1, \ldots, y_m, \ldots$

We inductively build an isomorphism π .

(Base case) Set $\pi(x_0) = y_0$.

(Successor step) We do a forth and a back step, extending the finite piece of π we have built so far.

• Any two conutable endless dense linear orders are isomorphic.

Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.

Enumerate X and Y as, respectively

- $x_0, x_1, \ldots, x_n, \ldots$
- $y_0, y_1, \ldots, y_m, \ldots$

We inductively build an isomorphism π .

(Base case) Set $\pi(x_0) = y_0$.

(Successor step) We do a forth and a back step, extending the finite piece of π we have built so far.

(Forth) Look at the first x_n , according to the enumeration, which we haven't handled yet. Map it to the first y_m which fits in with the $\pi(x_i)$ the same as x_n fits in with the x_i we've already handled.

• Any two conutable endless dense linear orders are isomorphic.

Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.

Enumerate X and Y as, respectively

- $x_0, x_1, \ldots, x_n, \ldots$
- $y_0, y_1, \ldots, y_m, \ldots$

We inductively build an isomorphism π .

(Base case) Set $\pi(x_0) = y_0$.

(Successor step) We do a forth and a back step, extending the finite piece of π we have built so far.

(Forth) Look at the first x_n , according to the enumeration, which we haven't handled yet. Map it to the first y_m which fits in with the $\pi(x_i)$ the same as x_n fits in with the x_i we've already handled.

(Back) Look at the first y_m which we haven't handled yet. Look for the first x_n which fits in with the x_i we've already handled the same as y_m fits in with the $\pi(x_i)$. Set $\pi(x_n) = y_m$.

• Any two conutable endless dense linear orders are isomorphic.

Suppose $(X, <_X)$ and $(Y, <_Y)$ are countable EDLOs.

Enumerate X and Y as, respectively

- $x_0, x_1, \ldots, x_n, \ldots$
- $y_0, y_1, \ldots, y_m, \ldots$

We inductively build an isomorphism π .

(Base case) Set $\pi(x_0) = y_0$.

(Successor step) We do a forth and a back step, extending the finite piece of π we have built so far.

(Forth) Look at the first x_n , according to the enumeration, which we haven't handled yet. Map it to the first y_m which fits in with the $\pi(x_i)$ the same as x_n fits in with the x_i we've already handled.

(Back) Look at the first y_m which we haven't handled yet. Look for the first x_n which fits in with the x_i we've already handled the same as y_m fits in with the $\pi(x_i)$. Set $\pi(x_n) = y_m$.

After countable many steps we've built π . By construction, π is injective and preserves the order. The forth step ensures dom $\pi = X$. And the back step ensures ran $\pi = Y$. So π is the desired isomorphism.

イロト イポト イヨト イヨト

A related theorem

Theorem (Cantor)

Every countable linear order embeds into $(\mathbb{Q}, <)$. That is, if $(X, <_X)$ is a countable linear order then $(X, <_X)$ is isomorphic to a suborder of $(\mathbb{Q}, <)$.

< □ > < 同

A related theorem

Theorem (Cantor)

Every countable linear order embeds into $(\mathbb{Q}, <)$. That is, if $(X, <_X)$ is a countable linear order then $(X, <_X)$ is isomorphic to a suborder of $(\mathbb{Q}, <)$.

Proof sketch: Like the back-and-forth argument, except we only need the forth step to build an embedding $\pi : X \to \mathbb{Q}$.

See page 169 in the textbook for the full proof.