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Last time

Last week, we proved that
√

2 and
√

3 are irrational. We also “proved”
that

√
4 is irrational. To understand better just why the proof didn’t work

for the 4 case, and to see how to properly generalize it, we need to do a
bit of number theory.

Number theory is the branch of mathematics which studies the natural
numbers. Central to number theory is the prime numbers.
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Prime numbers

Definition

An integer p is prime if p > 1 and the only positive divisors of p are 1 and
p.

Why require p > 1? Why isn’t 1 prime?

We could define things differently and let 1 be prime. And it’s
straightforward to transfer from a definition disallowing 1 to a definition
allowing 1—let’s call this second definition prime’.

If I prove a theorem like “all prime numbers are XYZ”, you can
translate it to a theorem like “all prime’ numbers > 1 are XYZ”.

So the question really is which definition is more convenient.

It turns out the no 1 definition is more convenient in most contexts.
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Prime factorization

Theorem (Fundamental theorem of arithmetic)

Every positive integer has a unique factorization as a product of prime
numbers.

There’s a couple corner cases we need to address.

The prime factorization of 13 is: 13 = 13. That is, we factor 13 as
the product of just one prime. (And similar for any other prime.)

1 is the product of zero primes, the empty product.

We want to define the empty product to be 1 because 1 is the
multiplicative identity—for any x we have 1 · x = x .
Compare to how the empty sum is 0—if you add together zero many
numbers their sum should be 0.
But at the end of the day, this is just a definition, and we could use a
different one. We use this one because it’s more convenient, like how
we defined primes so that 1 is not prime.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Some number theory Spring 2021 4 / 34



Prime factorization

Theorem (Fundamental theorem of arithmetic)

Every positive integer has a unique factorization as a product of prime
numbers.

There’s a couple corner cases we need to address.

The prime factorization of 13 is: 13 = 13. That is, we factor 13 as
the product of just one prime. (And similar for any other prime.)

1 is the product of zero primes, the empty product.

We want to define the empty product to be 1 because 1 is the
multiplicative identity—for any x we have 1 · x = x .
Compare to how the empty sum is 0—if you add together zero many
numbers their sum should be 0.
But at the end of the day, this is just a definition, and we could use a
different one. We use this one because it’s more convenient, like how
we defined primes so that 1 is not prime.
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The fundamental theorem of arithmetic

Theorem (Fundamental theorem of arithmetic)

Every positive integer has a unique factorization as a product of prime
numbers.

This theorem is within our grasp and we will indeed prove it.

This theorem is an example of what mathematicians call a existence
and uniqueness result.

It asserts two things:

For each positive integer n there exists a prime factorization for n; and
This prime factorization is unique.

So we have two things to prove, and will prove them separately.
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Existence

Theorem

Every positive integer has a prime factorization.

Our proof uses mathematical induction, a principle we will study in more detail

shortly. To prove something is true for all positive integers we show that if it’s

true for all positive integers < n then it must also be true for n.

Proof.

The number 1 is the empty product, so it trivially works. Now consider
n > 1 and suppose that every positive integer < n has a prime
factorization. There are two cases to consider.
Case 1: Suppose n is prime. Then n has the trivial prime factorization
n = n and we are done.
Case 2: Suppose n is not prime. Then n = ab for some positive integers
a, b < n. Both a and b have prime factorizations. Multiplying them
together gives a prime factorization for n.
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An alternate way to formulate the proof

We could instead formulate this proof using the least number principle.

Proof.

Suppose toward a contradiction that there is a positive integer without a
prime factorization. By the least number principle there is a smallest
counterexample. That is, there is a positive integer n with no prime
factorization but every positive integer < n has a prime factorization. It
cannot be that n = 1 or n is prime, as those trivially have prime
factorizations.
So it must be that n = ab for positive integers a, b < n. But by
multiplying together the prime factorizations for a and b we get a prime
factorization for n. This is a contradiction, as n was supposed to have no
prime factorization. So it must be that we were wrong to assume there is
a positive integer without a prime factorization.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Some number theory Spring 2021 7 / 34



An alternate way to formulate the proof

We could instead formulate this proof using the least number principle.

Proof.

Suppose toward a contradiction that there is a positive integer without a
prime factorization. By the least number principle there is a smallest
counterexample. That is, there is a positive integer n with no prime
factorization but every positive integer < n has a prime factorization. It
cannot be that n = 1 or n is prime, as those trivially have prime
factorizations.
So it must be that n = ab for positive integers a, b < n. But by
multiplying together the prime factorizations for a and b we get a prime
factorization for n. This is a contradiction, as n was supposed to have no
prime factorization. So it must be that we were wrong to assume there is
a positive integer without a prime factorization.
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Uniqueness

Proving the uniqueness of prime factorizations is trickier.

We will need to prove a series of lemmas to get to it.
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Euclidean division

This lemma essentially says that you can do long division with integers.

Lemma

For positive integers n and d there are unique integers q and r so that
n = qd + r and 0 ≤ r < d .

The connection to long division probably is clearer if I explain the
mnemonic behind the variable names:

n is for numerator

d is for denominator

q is for quotient

r is for remainder

This is another existence and uniqueness result, and we have to prove both
of them.
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Euclidean division: uniqueness

Lemma

For positive integers n and d there are unique integers q and r so that
n = qd + r and 0 ≤ r < d .

Proof of Uniqueness.

Fix n and d , and suppose both q0, r0 and q1, r1 satisfy n = qid + ri and
0 ≤ ri < d . Let’s do a bit of algebra. We have q0d + r0 = q1d + r1, and
rearrange to r1 − r0 = (q0 − q1)d . That is, r1 − r0 is a multiple of d . Since
−d < r1 − r0 < d , we get that r1 − r0 = 0, that is r1 = r0. It now
immediately follows that q1 = q0.
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Euclidean division: existence

Lemma

For positive integers n and d there are unique integers q and r so that
n = qd + r and 0 ≤ r < d .

Proof of Existence.

Let q + 1 be the smallest natural number so that n < (q + 1)d . We can
use the least number principle here because (n + 1) works: n < (n + 1)d .
Note that 0 < q + 1 because n ≥ 0. Now consider q = (q + 1)− 1. We
have q ≥ 0. And qd ≤ n < qd + d , by choice of q + 1.
Because qd ≤ n, there must be r ≥ 0 so that qd + r = n, namely
r = n − qd . And r < d because qd + r = n < qd + d .
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Bézout’s identity

Lemma

For any integers a and b which are relatively prime, there are integers x
and y so that 1 = ax + by .

This lemma is of the form “for all. . . there exists. . .”, asserting that for all
objects of a certain type there is an object satisfying a certain property.
Many statements in mathematics are of this form.

The way we prove this is: we assume we are given integers a and b which
are relatively prime, and then we try to find the desired x and y .

In this case, we will be indirect; rather than directly exhibiting how to
compute x and y from a and b we will just show they exist.
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Bézout’s identity

Lemma

For any integers a and b which are relatively prime, there are integers x
and y so that 1 = ax + by .

Proof.

By the least number principle, let d be the smallest positive integer which
can be written as a integer linear combination of a and b, that is,
d = ax + by for some integers x and y . We can apply the least number
principle because a = a · 1 + b · 0, and indeed this implies d ≤ a. Note that
if we can show that d = 1 then we will be done.
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Proof that d = 1.

To prove this, we show that d divides both a and b. This is enough, since
1 is the only positive integer with this property.

By the Euclidean division
lemma: a = qd + r for q and 0 ≤ r < d . Now some algebra:

r = a− qd = a− q(ax + by) = a(1− qx) + b(−qy).

We have written r as an integer linear combination of a and b. Since
r < d and d was the smallest positive such number, the only possibility is
that r = 0. So a = qd , meaning that d divides a. A similar argument,
where we divide b by d , shows that d is a divisor of b.
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A criticism of this proof

This proof is non-constructive: we argued that x and y must exist, but we
didn’t give any way to calculate them.

This is good enough for proving Bézout’s identity, and it will be good
enough for applying the lemma.

But if you want to actually know what x and y are for a specific a
and b, this doesn’t help at all.

There are other proofs which do give you a way to explicitly compute
x and y .

These are good, because they give you extra information.

But they are also longer. I went with the shorter proof that gives less
info because it’s enough for what we need.
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Euclid’s lemma

Lemma

If p is prime and p divides ab then p divides a or p divides b.

A few comments before the proof:

This theorem is an “if. . . then. . .” statement. This is a common form
to see in mathematical statements.

We prove it by assuming the if and proving the then.

The then here is an or statement—p divides a or p divides b.
In mathematics, we use “or” to mean the inclusive or, allowing both
options to be true. This is in contrast to ordinary English usage, but
in math it’s generally more convenient.

We don’t want to rule out cases like p = a = b = 2.
If you do want to rule out having both options being true, you can say
something like “. . . then precisely one of the following is true:. . .”

To prove this “A or B” statement we will prove that if A is false then
B must be true. So either A is true, in which case we are done, or A
is false in which case B is true and we are done.
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Euclid’s lemma

Lemma

If p is prime and p divides ab then p divides a or p divides b.

Proof.

Suppose that p is prime and p divides ab.

Suppose that p does not divide
a, and we want to now see that p divides b.
Since p is prime and p does not divide a, it must be that p and a are
relatively prime. So we can apply Bézout’s identity: 1 = px + ay for some
integers x and y . Multiplying both sides by b:

b = px + aby .

Since ab is a multiple of p, this shows that b is a multiple of p, as
desired.
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relatively prime. So we can apply Bézout’s identity: 1 = px + ay for some
integers x and y . Multiplying both sides by b:

b = px + aby .

Since ab is a multiple of p, this shows that b is a multiple of p, as
desired.
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Corollaries of Euclid’s lemma

Corollary

If p is prime and p divides a2 then p divides a.

Proof.

This is just the special case of Euclid’s lemma where a = b.

Keep this version of Euclid’s lemma in mind. We’ll use it to prove that
√
p

is irrational for every prime p.
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Corollaries of Euclid’s lemma

Corollary

If p is prime and p divides a product of k many integers a1a2 · · · ak then p
divides one of the multiplicands ai in the product.

We will prove this by mathematical induction on k . We assume that this is
true if you multiply together < k many numbers, and show it must be true
if you multiply together k many.

Proof.

The k = 1 case is trivial, so let’s consider the k > 1 case. Think of the
product as the product of two things: a1a2 · · · ak = a1 · (a2 · · · ak).
By Euclid’s lemma, either p divides a1 or p divides a2 · · · ak . If p divides a1

then we are done. In the other case, we have that p divides a product of
k − 1 many multiplicands, so p must divide one of them.
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No more lemmas

With these three lemmas out of the way, we are now in a position to prove
that prime factorizations are unique. We already proved prime
factorizations exist, so once we prove uniqueness we have finished proving
the fundamental theorem of arithmetic.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Some number theory Spring 2021 20 / 34



Uniqueness of prime factorizations

Let n be a positive integer, and suppose we have two prime factorizations
of n:

n = p1 · · · pk and n = q1 · · · q`.

Proof these two factorizations are rearrangements of each other.

We prove this by mathematical induction. We assume that all positive
integers < n have a unique prime factorization, and use that to show n has
a unique factorization.

Because p1 divides n = q1 · · · q`, by the strong form of Euclid’s lemma we
get that p1 divides qj for some 1 ≤ j ≤ `. Rearranging the multiplicands if
necessary, we may assume that this is q1. But since p1 and q1 are both
prime this means that p1 = q1. So then we have two prime factorizations
for n/p1, namely n/p1 = p2 · · · pk = q2 · · · q`.
Since n/p1 < n, these two factorizations must be rearrangements of each
other. So the original factorizations are rearrangements of each other.
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Take a break

It took a while, but we proved a significant result!
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How many primes are there?

Theorem

There are infinitely many primes.

Proof.

Suppose you have a finite list of primes p1, . . . , pk . Multiply them together
and add 1:

N = p1 · · · pk + 1.

Observe that if you divide N by any prime in your list, then the remainder
is 1. So none of the primes in the prime factorization of N can show up in
your list. Since this reasoning works for any finite list, there can be no
finite list of all primes. That is to say, there are infinitely many primes.
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Rephrasing this proof

One sometimes sees this proof formulated as a proof by contradiction.

Proof.

Suppose toward a contradiction there are finitely many primes. Then we
can list them out: p1, . . . , pk . Set N = p1 · · · pk + 1. Then no prime can
divide N, so N has no prime factorization. But we know that every
positive integer has a prime factorization, so this is impossible. So it must
be that there are infinitely many primes.
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Direct proofs versus proofs by contradiction

Sometimes you can prove something directly, or you can prove it by
contradiction.

Usually, direct proofs are better, because they give more information.
To prove “if A then B”, you assume A and try to show B.
Along the way, you prove a bunch of smaller facts about what’s true if
you assume A.
If you try to prove B by contradiction, you assume B is false and then
try to derive a contradiction. But then any smaller facts you prove
along the way are only ‘true’ in an impossible setting—because, as is
the whole point, if A is true then it’s impossible for B to be false.
So you don’t get that extra info!

One thing it’s easy to do is prove “if A then B” by something like:
Assume A. Suppose toward a contradiction that B is false. [Argue
that B is true, without using the assumption that B is false.] So we
get a contradiction, so B is true.

You can immediately turn any proof like this into a direct proof!
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Assume A. Suppose toward a contradiction that B is false. [Argue
that B is true, without using the assumption that B is false.] So we
get a contradiction, so B is true.

You can immediately turn any proof like this into a direct proof!
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Square roots

Way back at the beginning of these slides, I promised we would get some
more light on when

√
n is irrational. It was a long detour—through some

results which are of interest in their own right—but let’s finally return to
that question.
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Square roots of primes

Equipped with Euclid’s lemma, we can generalize the proof that
√

2 is
irrational.

Theorem

If p is prime then
√
p is irrational.

Proof.

Suppose toward a contradiction that
√
p is rational. Then we can write√

p = a/b where a and b are relatively prime. Some algebra yields that
a2 = pb2. That is a2 is a multiple of p and so by Euclid’s lemma a is also
a multiple of p. So we can write a = pk for some integer k . Substituting
this into the previous equation and doing a bit of algebra gives b2 = pk2.
So q2 is a multiple of p, and hence by Euclid’s lemma again q is a multiple
of p. So a and b are relatively prime, but are both multiples of p. This is
impossible, so it must be that

√
p is irrational.
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Can we push this further?

An integer n is a perfect square if n = a2 for some integer a.

The square root of a perfect square is an integer, hence rational: if
n = a2 then

√
n = |a|.

This puts a limit on what square roots of natural numbers can be
irrational.

But it’s the only limit!
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Some number theory Spring 2021 28 / 34



Square roots of natural numbers

Theorem

Consider a natural number n. Then
√
n is rational if and only if n is a

perfect square.

This theorem is an “A if and only if B” statement, saying that two
things are equivalent.

“A if and only if B” is the same as saying: “if A then B, and if B
then A”.

So to prove an if-and-only-if statement, we need to prove two things:
the forward if-then and the backward if-then.

Sometimes when proving “if A then B”, it’s easier to prove the
contrapositive “if B is false then A is false”.

As we’ll talk more when we discuss some logic, any if-then statement
is logically equivalent to its contrapositive.
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Square roots of natural numbers

Theorem

Consider a natural number n. Then
√
n is rational if and only if n is a

perfect square.

Proof of ⇐ direction.

This is the observation from a couple slides ago: if n = a2 then√
n = |a|.
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Square roots of natural numbers

Theorem

Consider a natural number n. Then
√
n is rational if and only if n is a

perfect square.

Proof of ⇒ direction.

We prove this by contrapositive. That is, we assume n is not a perfect
square and we want to show

√
n is irrational.

Since n is not a perfect
square, in particular n > 1. So n has a nontrivial prime factorization.
Here, it’s convenient to group together copies of the same prime:

n = pm1
1 · · · p

mk
k .

Each of the exponents mi is either even or odd. Let’s look at the two
cases to see what’s going on.
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Square roots of natural numbers

Theorem

Consider a natural number n. Then
√
n is rational if and only if n is a

perfect square.

Proof of ⇒ direction.

Even exponent:
√
p2k = pk is an integer, and hence rational.

Odd exponent:
√

p2k+1 = pk
√
p is irrational.

So
√
n is an integer multiplied by some square roots of different primes.

There has to be at least one, because if all exponents were even then n
would be a perfect square. Multiplying a number by a nonzero integer
won’t change whether it’s irrational—proof: homework :)—so we’ve
reduced the problem down to checking that the product of a bunch of
square roots of different primes must be irrational. Once we have done
that, we are done.
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The missing step

Lemma

The product of the square roots of a nonempty list of distinct primes is
irrational.

For the sake of readability, I will present the case where the list has 2 primes.

Proof.

Suppose toward a contradiction that
√
pq is rational, where p 6= q are

prime. Then, we can write
√
pq = a/b where a and b are relatively prime.

We can rearrange this to get a2 = pqb2. That is, a2 is a multiple of p, and
so by Euclid’s lemma a is a multiple of p. Similarly, a must be a multiple
of q. Therefore, a must be a multiple of pq. That is, a = pqk for some
integer k . Substituting this in and rearranging, we get b2 = pqk2. By the
same reasoning as before, b is a multiple of pq. So we’ve seen that a and
b have pq as a common factor, contradicting that they are relatively
prime. So it must be that

√
pq is irratinonal, as desired.
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The real last missing step

One step in this needs to be justified.

Lemma

Suppose p and q are distinct primes which both divide n. Then pq divides
n. More generally, if you have a list of distinct primes which all divide n,
then the product of the primes also divides n.

Proof.

Homework :)

K Williams (U. Hawai‘i @ Mānoa) Math 321: Some number theory Spring 2021 34 / 34



The real last missing step

One step in this needs to be justified.

Lemma

Suppose p and q are distinct primes which both divide n. Then pq divides
n. More generally, if you have a list of distinct primes which all divide n,
then the product of the primes also divides n.

Proof.

Homework :)
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