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Previously in Math 321

We’ve been looking at some examples of proofs in mathematics, and we’ve
used different proof strategies along the way. Some proof strategies are
based on the logical structure of the mathematical statements in question.

So let’s talk a bit about logic.
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Basic objects of logic

In the math we’ve done so far, the objects we’ve been concerned
about have mainly been numbers.

Mathematicians care about other kinds of objects, and we will see
more as the semester progresses—functions, sets, graphs, and so on.

In logic, the objects we care about are linguistic.
A predicate is a statement that can be either true or false. We will
care about mathematical statements, but logic applies more broadly.

“There are infinitely many primes.”
“There exists a real-valued function which is continuous everywhere
but differentiable nowhere.”
“p is prime.”
“The limit of f (x) as x approaches a is L.”

Some predicates have parameters, others do not. When we use
variables to refer to predicates, we write e.g. P(x , y) to denote that
the predicate P has parameters x and y .

Whether P(x , y) is true can depend on what you plug in for x and y !
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Compound predicates

Starting with some predicates P,Q, . . . you can build up more complicated
predicates.

P or Q.

If P then Q but not R.

There is a natural number x so that P(x).

We want to understand these ways of building up more complicated
predicates.

Whether a statement like “P and not Q” is true depends only upon
whether P and Q are true, not upon their content.

And similar goes for how it can be used in proofs.

So let’s analyze how this works. We’ll start with predicates without
parameters.
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Truth tables

One way to analyze this is to use truth tables, developed circa 1920 by the
philosopher Ludwig Wittgenstein and, independently, the mathematicial
Emil Post. (And in unpublished work of Charles Peirce from about 1890.)

The idea is, you can exhaustive list all the possible combinations of truth
values for the inputs, and then list the corresponding truth values of the
output.

P Q P and Q

T T
T F
F T
F F
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Or

P Q P or Q

T T
T F
F T
F F
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Not

P not P

T
F
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If-and-only-if

P Q P iff Q

T T
T F
F T
F F
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If-then

P Q if P then Q

T T
T F
F T
F F
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Checking logical equivalence

You can show that two predicates are logically equivalent by constructing
the truth predicates for them and seeing they have the same outputs.

For example, let’s see that an if-then statement is equvialent to its
contrapositive.

P Q if P then Q if not Q then not P

T T
T F
F T
F F
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New logical connectives?

You could introduce new logical connectives and give truth tables for
them, but what we have suffices to express anything.

For example, let’s see how to express exclusive-or using just ‘and’ and ‘or’.

P Q P xor Q

T T
T F
F T
F F
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DeMorgan’s Laws

You can also use truth tables for more complicated logical rules.

DeMorgan’s laws state that the following two pairs of statements are
equivalent:

“not (P and Q)” and “not P or not Q”

“not (P or Q)” and “not P and not Q”

P Q not (P and Q) not P or not Q

T T
T F
F T
F F
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Predicates with parameters

Predicates with parameters are a little trickier to handle.

Most of the domains of interest to mathematicians are infinite—the
natural numbers, the real numbers, and so on.

So you cannot so easily list all possible combinations of truth values.
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Predicates and sets

Let’s see a couple examples before the general theory.

Work over the domain N.
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Predicates and sets

Work over a domain U.

If P(x) is a predicate about objects x from U, then the extension of
P(x) is the set {x ∈ U : P(x)}.

In an abuse of notation, I will write P for the extension of P(x).

Logical connectives applied to predicates correspond to set theoretic
operations applied to sets.

The extension of “P(x) and Q(x)” is the intersection P ∩ Q.
The extension of “P(x) or Q(x)” is the union P ∪ Q.
The extension of “not P(x)” is the complement U \ P.

You can do similar for if-then and iff, but here’s a better way to think
about those.

“if P(x) then Q(x)” is true for all x ∈ U if and only if P ⊆ Q.
“P(x) iff Q(x)” is true for all x ∈ U if and only if P = Q.
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Venn diagrams
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Quantifiers

Mathematics is full of statements like “every non-constant polynomial
has a root in the complex numbers”.

We’re not just talking about some predicate P(x) for which we could
plug in specific objects for x and see what we get.

Rather, we’re saying something about how many such x there are.

It’s maybe clearer if we rewrite this statement: “for all nonconstant
polynomials p(x) there is a complex number r so that p(r) = 0”.

“For all” is the universal quantifier, talking about all objects of a
certain type.
“There is” is the existential quantifier, saying there exists some object
of a certain type.

There are symbolic abbreviations:

∀x P(x) abbreviates “for all x , P(x)”.
∃x P(x) abbreviates “there exists x so that P(x)”.
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Bounded quantifiers

Often when quantifier over objects, we want to restrict to a smaller
domain.

For example, if we’re talking about natural numbers we may want to
restrict a statement to just being about primes.

When we do this we are bounding the quantifiers.

Suppose we want to quantify over a smaller domain D.

“for all x ∈ D, P(x)” is equivalent to “for all x , if x ∈ D then P(x)”.
“there exists x ∈ D so that P(x)” is equivalent to “there exists x so
that x ∈ D and P(x)”.

So if you like, you can consider bounded quantifiers an abbreviation.
But they’re so convenient for phrasing things that we’ll use them.
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DeMorgan’s laws

Just like we have DeMorgan’s laws for and/or, there are DeMorgan’s laws
for quantifiers. In short, they say that if you push a ‘not’ inside a
quantifier or pull a ‘not’ out from inside a quantifier, then it flips the
quantifier to the other type.

“not (for all x , P(x))” is equivalent to “there exists an x so that not
P(x)”.

“not (there exists x so that P(x))” is equivalent to “for all x , not
P(x)”.

These are often useful for doing proofs by contradictions. For example, if
you want to prove that “for all x , P(x)”, you assume it’s false—that is,
you assume there is some x so that not P(x)—and you try to derive a
contradiction.
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