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Last week

A set X is countable if there is a
one-to-one function f : X → N.

Equivalently, X is countable if you can
enumerate all the elements of X .

We saw lots of different sets are
countable: Nk , N∗, Z, Q.

But at least one set is not countable: R.

Given any enumeration of real numbers we
can find diagonalize against the
enumeration to produce a real number not
on the enumeration.

Let’s see some more uncountable sets.
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More uncountable sets

For a set A, its powerset P(A) is the set of
subsets of A.

Theorem (Cantor, 1891)

For any set A there is no one-to-one function
f : P(A)→ A.

Let’s do this by contradiction. Suppose that
f : P(A)→ A is one-to-one. Define a set
D ⊆ A as

D = {a ∈ A : a ∈ ran f and a 6∈ f −1(a)}.

Set d = f (D). Now ask: is d ∈ D?

If d ∈ D, then by definition of D we get that
d 6∈ f −1(d). But f −1(d) = D, so then d 6∈ D,
a contradiction.

If d 6∈ D, then by definition of D and because
D = f −1(d), we get that d ∈ D, also a
contradiction.

Either way we get a contradiction, so it must
be that our original assumption that there were
such an f is wrong.

Corollary

P(N) is uncountable
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A bit of the general theory

Let A and B be sets.

A and B are equinumerous, written
A ' B, if there is a bijection from A to B.

A . B if there is a one-to-one function
from A to B.

For homework, you check that ' is an
equivalence relation and . is reflexive and
transitive (in jargon: a pre-order).

Equinumerosity expresses that A and B have
the same number as elements. Considered as
discrete collections of objects they have the
same size. You can think of Cantor’s theorem
as expressing that there are multiple sizes for
infinite sets.

Every countable set is either finite or
equinumerous with N.

If A ' N we call A countably infinite.

Because every countable set is equinumerous
with a subset of N, it is enough to consider
A ⊆ N. If A is finite, then it’s finite. If A is
infinite, we get a bijection f : N→ A by
setting f (n) to be the n-th element of A,
according to the order on N. This function is
defined on all of N because A is infinite.
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Our old results in this new language

We can use these new definitions to succinctly
state some of the earlier results.

N ' N× N ' N∗

N ' Z ' Q
N < R (i.e. N . R but N 6' R)

X < P(X ), for any set X

Iterating out this last one we get infinitely
many different sizes of infinite sets:

N < P(N) < P(P(N)) < · · · < Pn(N) < · · ·

And we could build out even higher. If

Pω(N) =
⋃
k∈N
Pk(N)

then Pω(N) > Pn(N) for every n ∈ N.

And can then keep going:

Pω(N) < P(Pω(N)) < · · ·
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The Cantor–Schröder–Bernstein theorem

Theorem (Cantor–Schröder–Bernstein)

If A . B . A then A ' B.

It may be tempting to think this result is
obvious—if A is at least as big as B and B is
at least as big as A then surely they must have
the same size. But it’s not obvious. The proof
is nontrivial.

A way to think of it: this theorem is exactly
what says equinumerosity is a reasonable
notion of size.

Before we see the proof, let’s see an
application.

R ' R2.

It’s easy to see R . R2 (why?), so let’s check
the other direction. We need a one-to-one
function f : R2 → R. Here’s the idea:

f (3.14159..., 2.71828...) = 32.1741185298...

In general, f interleaves the digits of its two
inputs to produce a single real number.

It’s usually easier to construct two one-to-one functions rather than get an exact bijection, so
this theorem is nice :)
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The Cantor–Schröder–Bernstein theorem

Theorem (Cantor–Schröder–Bernstein)
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Cantor–Schröder–Bernstein

Theorem (Cantor–Schröder–Bernstein)

If there are one-to-one functions f : A→ B and
g : B → A then there is a bijection h : A→ B.

Set A0 = A \ ran g .

Set
An+1 = g [f [An]] = {g(f (a)) : a ∈ An}.
Set A∗ =

⋃
n∈N An.

Define h : A→ B as h(a) = f (a) if a ∈ A∗ and
otherwise h(a) = g−1(a).

Claim: h is a bijection

(h is one-to-one) Suppose toward a
contradiction h(a) = h(b) but a 6= b. If
a ∈ A∗, then a ∈ An for some n and
h(a) = f (a). Because f is one-to-one, it
cannot be that b ∈ A∗, so it must be that
h(b) = g−1(b). But then b = g(f (a)) so
b ∈ An+1 ⊆ A∗, a contradiction. Similarly, it
cannot be that b ∈ A∗. So the only possibility
is that a, b ∈ A \ A∗. But then
h(a) = g−1(a) = g−1(b) = h(b), so a = b, a
contradiction.
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(h is one-to-one) Suppose toward a
contradiction h(a) = h(b) but a 6= b. If
a ∈ A∗, then a ∈ An for some n and
h(a) = f (a). Because f is one-to-one, it
cannot be that b ∈ A∗, so it must be that
h(b) = g−1(b). But then b = g(f (a)) so
b ∈ An+1 ⊆ A∗, a contradiction. Similarly, it
cannot be that b ∈ A∗. So the only possibility
is that a, b ∈ A \ A∗. But then
h(a) = g−1(a) = g−1(b) = h(b), so a = b, a
contradiction.
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If there are one-to-one functions f : A→ B and
g : B → A then there is a bijection h : A→ B.

Set A0 = A \ ran g .

Set
An+1 = g [f [An]] = {g(f (a)) : a ∈ An}.
Set A∗ =

⋃
n∈N An.

Define h : A→ B as h(a) = f (a) if a ∈ A∗ and
otherwise h(a) = g−1(a).

Claim: h is a bijection

(h is one-to-one) Suppose toward a
contradiction h(a) = h(b) but a 6= b. If
a ∈ A∗, then a ∈ An for some n and
h(a) = f (a). Because f is one-to-one, it
cannot be that b ∈ A∗, so it must be that
h(b) = g−1(b). But then b = g(f (a)) so
b ∈ An+1 ⊆ A∗, a contradiction. Similarly, it
cannot be that b ∈ A∗. So the only possibility
is that a, b ∈ A \ A∗. But then
h(a) = g−1(a) = g−1(b) = h(b), so a = b, a
contradiction.
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If there are one-to-one functions f : A→ B and
g : B → A then there is a bijection h : A→ B.

Set A0 = A \ ran g .

Set
An+1 = g [f [An]] = {g(f (a)) : a ∈ An}.
Set A∗ =

⋃
n∈N An.

Define h : A→ B as h(a) = f (a) if a ∈ A∗ and
otherwise h(a) = g−1(a).

Claim: h is a bijection

(h is onto) Consider y ∈ B. If g(y) 6∈ A∗, then
h(g(y)) = g−1(g(y)) = y , so y ∈ ran h. For
the other case, suppose g(y) ∈ A∗, which
means that g(y) ∈ An for some n. By
definition, g(y) 6∈ A0. So n = k + 1 ≥ 1. But
then there is some a ∈ Ak so that
g(f (a)) = g(y). Since g is one-to-one, we
conclude h(a) = f (a) = y , so y ∈ ran h.

So h is a bijection, as desired.
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Some equinumerosities

Theorem

The following sets are all equinumerous.

1 R;
2 Any nondegenerate interval of real

numbers;

3 P(N);

4 NN, the set of functions N→ N;
5 RN, the set of functions N→ R;
6 The set of continuous functions R→ R.

It suffices to construct one-to-one functions in
both directions, not to directly construct
bijections.
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