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Hilbert’s hotel

You arrive at a really tall—infinitely
tall!—hotel. This man is running the front
desk.

He tells you that the hotel is completely
booked. Room n is filled already for every
room number n ∈ N.

Nonetheless, he assures
you that he can fit you in.

How?

What if instead of just you, you show up with
1000 friends? Can he still fit you all in
(without making you share a room)?
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Cramming even more people into Hilbert’s hotel

You are David Hilbert. Having just made space
for 1001 new guests, you are quite pleased with
yourself. But then more guests arrive.

An infinite bus appears, with one person in
each set n ∈ N. Can you fit them all in?

An infinite train appears. There are cabs n
for each n ∈ N and each cab has seats s
for each s ∈ N. Can you fit them all in?

A half-marathon ends at the hotel and the
runners, densely packed with one runner
for each positive rational number, each
need rooms. Can you fit them all in?

K Williams (U. Hawai‘i @ Mānoa) Math 321: Infinity, I Spring 2021 3 / 11



Cramming even more people into Hilbert’s hotel

You are David Hilbert. Having just made space
for 1001 new guests, you are quite pleased with
yourself. But then more guests arrive.

An infinite bus appears, with one person in
each set n ∈ N. Can you fit them all in?

An infinite train appears. There are cabs n
for each n ∈ N and each cab has seats s
for each s ∈ N. Can you fit them all in?

A half-marathon ends at the hotel and the
runners, densely packed with one runner
for each positive rational number, each
need rooms. Can you fit them all in?
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Cantor’s cruiseship

You are still David Hilbert, and you’re feeling
great. You’re confident that no matter how
many guests show up you can fit them into
your hotel, and reap huge profits.

Georg Cantor’s cruise ship The Continuum
docks nearby. The guests, one for each
real number, disembark and show up to
your hotel, asking for a room to stay. Can
you fit them all in?

Before we answer this, let’s make precise the
mathematical ideas we’ve been playing with.
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Let’s make this mathematically precise

Definition

A set X is countable if there is a one-to-one
function r : X → N.

With Hilbert’s hotel we saw various room
assignment functions r which showed that
various sets were countable.

Let’s generalize
these ideas.

Theorem

The union of two countable sets is countable.

This is what we saw with the bus situation: we
had a countable set of already filled rooms and
a countable set of new guests and were able to
fit them into a countable set of rooms.

Let’s prove this. Suppose we have injections
f : A→ N and g : B → N. How do we
construct an injection h : A ∪ B → N?

Define h by cases: if x ∈ A, then
h(x) = 2 · f (x), and if x ∈ B \ A then
h(x) = 2 · g(x) + 1. That is, put A in the even
rooms and put whatever remains of B in the
odd rooms. It’s clear h is one-to-one.

Alternatively, we can think of the proof in
terms of enumerations: A and B are both
countable, so can enumerate their elements as
a0, a1, · · · , an, · · · and b0, b1, · · · , bn, · · ·
But then we can enumerate A ∪ B as
a0, b0, a1, b1, · · · , an, bn, · · ·
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Let’s be a bit more precise about enumerations

An enumeration is a listing of elements
index by natural numbers: x0, x1, . . .

Formally, an enumeration is a function
whose domain is N. (We write e.g. xn
rather than f (n).)

Theorem

A set is countable iff there is an enumeration
of all of its elements.

(⇒) Suppose f : A→ N is one-to-one. Fix in
advance a point p from A. Enumerate A as: xn
is f −1(n) if n ∈ ran f , or else xn is p.

(⇐) Suppose we have an enumeration
x0, x1, . . . of all the elements of A (possibly
with repitition). Define a function f : A→ N
as f (a) is the least n so that a = xn. This is
clearly one-to-one.

For example, we can enumerate Z as:

0, 1,−1, 2,−2, 3,−3, · · ·

So Z is countable.
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More countable sets

Theorem

N× N is countable.

Proof 1: Define f : N× N→ N as
f (a, b) = 3a5b. This is one-to-one by the
fundamental theorem of arithmetic.

Proof 2: We construct a bijection
p : N× N→ N which is a polynomial. The
idea is, we enumerate lattice points in the
plane by starting at (0, 0) and working outward
in diagonal lines. How many points have been
visited before we reach the point (x , y)?

The previous diagonals give
1 + 2 + · · ·+ (x + y) points. As we proved a
few chapters ago, this sum is equal to
(x + y)(x + y + 1)/2. And (x , y) is the
(y + 1)-th point on its diagonal. So in total
there are p(x , y) = 1

2 (x + y)(x + y + 1) + y
points in the enumeration before (x , y).

Corollary

Q is countable.

We can think of a rational number p/q written
in simplest form as a pair (p, q) of integers.
Since N×N and Z are both countable we have
Z× Z and thus also Q are countable.
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few chapters ago, this sum is equal to
(x + y)(x + y + 1)/2. And (x , y) is the
(y + 1)-th point on its diagonal.

So in total
there are p(x , y) = 1

2 (x + y)(x + y + 1) + y
points in the enumeration before (x , y).

Corollary

Q is countable.

We can think of a rational number p/q written
in simplest form as a pair (p, q) of integers.
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Even more countable sets

Theorem

A countable union of countable sets is
countable. That is, if A0,A1, . . . ,An, . . . are
countable sets then so is A =

⋃∞
n=0 An.

Fix, for each An, a one-to-one function
fn : An → N. We will define a one-to-one
function f : A→ N× N.

If a ∈ A, let n be the smallest number so that
a ∈ An. Then set f (a) = (n, fn(a)). This is
one-to-one because if a 6= b are elements of An

then fn(a) 6= fn(b).

Composing f with the bijection p : N× N→ N
gives a one-to-one function from A to N,
showing that A is countable.
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The countable sets don’t stop coming

Theorem

The set N∗ consisting of the finite sequences of
natural numbers is countable.

Let’s construct a one-to-one function
f : N∗ → N. Send the empty sequence with
zero elements to 0. Given a nonempty sequence
~s = s0, s1, . . . , sn of natural numbers set

f (~s) = 2s0+1 · · · 3s1+1 · · · psn+1
n ,

i.e. the product of the i-th prime pi to the
power si + 1, for i ≤ n. This map is one-to-one
by the fundamental theorem of arithmetic.
(Note we need the +1s for this!)

Corollary

Nk , the set of k-tuples of natural numbers, is
countable for each finite k.

Nk ⊆ N∗, since we can think of it as consisting
of the length k sequences. So restricting f to
Nk gives a one-to-one function.

Corollary

If A is countable, so are A× A, Ak , and A∗.

We can use an enumeration of A to translate
the results about N× N, Nk , and N∗ to A.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Infinity, I Spring 2021 9 / 11



Is there anything that isn’t countable?

We’ve been seeing a lot of examples of
countable sets.

N
Z
Q
A∗, the set of finite sequences from A, for
any countable set A

This last one implies a lot of sets are
countable:

The set of possible computer programs.

The set of possible books written in the
English language.

The set of polynomials with rational
coefficients.

Hence also the set of algebraic
numbers—numbers which are roots of
polynomials with rational coefficients.

Is there any set which is not countable????

Having asked this, let’s return to Cantor’s
cruise ship.
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R is uncountable

Theorem (Cantor, 1874)

R is uncountable. That is, there is no
enumeration consisting of all real numbers.

We’ll prove this by showing that given any
enumeration x0, x1, . . . of real numbers there is
a real number d which is not part of the
enumeration.

Define d to be the real number between 0 and
1 with the decimal expansion

0.d0d1d2 · · ·

given by the rule: dn = 5 if the n-th digit of xn
is 4, else dn = 4.

Let’s see that d 6= xn for every n. If d = xn,
then in particular they have the same digits in
their decimal expansion. But d was defined to
differ from xn in the n-th digit.
There is a small detail to be addressed.

Some numbers have two decimal
expansions.

For example, 1 = 1.000 . . . = 0.999 . . ..

In general, if you can write a number so
its decimal expansion is eventually 0s, you
could instead write it to eventually be all
9s.

Because d only has 4s and 5s, it avoids this
issue. It has a unique decimal expansion.
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