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Games

We’ve been talking about games. The big theorem we worked up to is that for a broad
class of games—two player, perfect information, non-random, finite—that always one
player has a winning strategy (or both can force a draw, if draws are allowed).

The proof went by looking at game trees.

We can think of all possible plays of the game as forming a tree.
Each terminal position in the tree is labeled with who wins if the game reaches that position.
We can then back-propagate this information to the tree, determining for each position who
is in a winning position—if they play right, they can always force a win.
The winning strategy for the game is then to play according to these labels to stay in a
winning position.

This construction is done inductively on the game tree.

So let’s talk about why it’s valid to do induction on more general structures than just the
natural numbers.
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Induction

N is the main setting where mathematicians
use induction, but it’s not the only one.

Some examples come from computer
science.

For example, computer scientists and
programmers often are interested in trees.
Many kinds of data naturally can be
represented as trees.

If you want to prove something is true for
all nodes in a tree, induction is one
method available to you.

Another computer science example is
formal grammars. You want to describe
some formal language, such as a
programming language, by giving recursive
rules for when something is a valid piece
of syntax.

To then prove things about this formal
language, you can do induction, with the
recursive rules corresponding to the
inductive steps in the argument.

It’s good to understand how induction works on N as the most important case. But you
should think of induction as a more general principle. If you’re looking at any object built up
according to recursive rules, you can use induction to prove facts about that object.
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The least number principle

With N, we saw that the least number principle
was an equivalent principle to induction.

If there is a natural number satisfying
some property, there is a smallest natural
number satisfying that property.

If X ⊆ N is nonempty, then X has a least
element.

To use the LNP to show induction is valid, the
idea is to look at minimal counterexamples.

Consider a set X of natural numbers.

Suppose we know that 0 ∈ X and that
n ∈ X implies n + 1 ∈ X .

Why can we conclude that X = N?

Suppose toward a contradiction that
X 6= N.

By the LNP, N \ X has a least element m.

It cannot be that m = 0, because 0 ∈ X .
So m = n + 1 for some n ∈ X . But then
m ∈ X . Contradiction.
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Generalizing the least number principle

Some ordered structures, like N, are totally ordered
(synonymously: linearly ordered): if you take any two
natural numbers, either they’re the same or one is
ordered above the other.

Other ordered structures, like trees, are merely partially
ordered: you can have two different elements in the
order which are incomparable, neither above nor below
the other.

So for this more general setting, we don’t want to talk
about least or smallest elements, we need a new concept.

In an ordered structure, an element m is minimal if there
is nothing smaller than it. (But there may be elements
off to the side which are incomparable.)
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The minimal object principle

Consider an ordered structure X .

X satisfies the minimal object principle if
given any nonempty subset Y ⊆ X , there
is a minimal element of Y (possibly more
than one).

Synonymously, we say that X is
well-founded.

Trees where every path is finite, like the game
trees we considered, satisfy the minimal object
principle.

Let’s see why that is.

Consider a tree where every path is finite.

Suppose toward a contradiction that this
tree doesn’t satisfy the MOP. Then, there
is some nonempty subset Y of the tree
which has no minimal elements.

Pick any element x0 of Y . Because Y has
no minimal elements, there is a an
element in Y which is smaller than x0.

So pick x1 to be an element of Y which is
smaller than x0.

And we can continue this process. Having
already picked x0 > x1 > · · · > xn from Y ,
pick xn+1 from Y to be smaller than xn.

So we have constructed an infinite path
through the tree, a contradiction.
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From the minimal object principle to induction

Just like the least number principle for N
implies induction is valid, the minimal object
principle for an ordered structure X implies
induction is valid for X .

But like with going from the least number
principle to the minimal object principle, we
have to formulate things a bit differently for
the more general setting.

The new complication is: In N each number is
either 0, the smallest number, or else it has
exactly one immediate predecessor. In a more
general setting, an element might have many
immediate predecessors. So it’s not enough to
just look at one previous case, we need to look
at all previous cases.

So to generalize this, we want to use the
strong induction formulation.

Induction for a general ordered structure X :

Phrased in terms of sets: Consider a
subset Y of X . Suppose that Y satisfies
the property that for any x ∈ X , if every
y < x is in Y , then x ∈ Y . Then, Y = X .

Or you to phrase it in terms of a proof
strategy. To prove that every x ∈ X
satisfies some property P(x), it is enough
to do the following:

Consider an arbitrary x ∈ X .
Assume that every y < x satisfies P(y).
Prove P(x).
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From the minimal object principle to induction

Consider an ordered structure X .

X satisfies the minimal object principle if
given any nonempty subset Y ⊆ X , there
is a minimal element of Y (possibly more
than one).

Induction is valid for X if it satisfies the
following for every Y ⊆ X : Suppose that
Y satisfies the property that for any
x ∈ X , if every y < x is in Y , then x ∈ Y .
Then, Y = X .

Let’s see that the MOP for X implies induction
is valid for X . We follow the same argument as
showing that the LNP for N implies induction
is valid for N.

Consider Y ⊆ X , and suppose that for
any x ∈ X , if every y < x is in Y , then
x ∈ Y . We want to see that Y = X .

Assume toward a contradiction that
Y 6= X . That is, X \ Y is nonempty.

By the MOP, X \ Y has a minimal
element, call it m.

By definition of minimality, if y < m in X ,
then y ∈ Y . This holds for all y < m.

So by the assumption on Y we get that
m ∈ Y . Contradiction.
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Summing things up

Because game trees satisfy the MOP, a special
case of what we just saw is that induction is
valid for game trees (and, more generally, any
tree whose paths are all finite). So the
inductive argument to label the winning
positions in a game tree is valid.

In fact, the opposite direction also holds: if
induction is valid for an ordered structure X ,
then X satisfies the minimal object principle.

But this is more difficult, and we don’t need it,
so I won’t give you a proof.

To sum up, here are three ways you can think
about induction:

It’s a property about the natural numbers,
giving you a proof strategy to prove
universal statements about N.

It’s a property about any structure built
up according to recursive rules.

It’s a property about any structure
satisfying the minimal object property.
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