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Proofs by induction

Two ways to prove something P(n) is true for every natural number n:

Direct proof

Consider an arbitrary natural number n.

Prove P(n).

Proof by induction

Prove P(0).

Consider an arbitrary natural number n.

Prove P(n) implies P(n + 1).

That is, assume P(n).
Then prove P(n + 1).

Both proofs have the goal of proving P holds for an arbitrarily chosen
natural number, but induction lets you make an extra assumption in your
proof. This extra assumption can make it easier to reach your goal.
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An example: tiling most of a square

Theorem

If you remove a single square from a 2n × 2n grid, then you can tile the
remaining squares with L-shaped trominos.
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An example: divisibility

Theorem

6n − 1 is always a multiple of 5.

Proof.

(Base case) 60 − 1 = 0 is a multiple of 5.
(Inductive step) Assume 6n − 1 is a multiple of 5, i.e. 6n = 5k + 1 for
some integer k . Then,

6n+1 = 6(5k + 1) = 30k + 6 = 5(6k + 1) + 1.

So 6n+1 − 1 = 5(6k + 1) is a multiple of 5.

You can generalize this proof: an − 1 is a multiple of a− 1 for every
positive integer a.
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An example: Fibonacci numbers

The Fibonacci numbers fk are defined recursively:

f0 = 0;

f1 = 1;

fk+2 = fk + fk+1.

Here are the first few Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

When a sequence is defined recursively, it means that later values in the
sequence depend on previous values. So induction is a natural way to
prove facts about the Fibonacci numbers.
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An example: Fibonacci numbers

Theorem

The Fibonacci numbers satisfy:

f0
2 + f1

2 + · · · + fn
2 = fn · fn+1.

Proof.

(Base case) If n = 0 this is the statement 02 = 0 · 1.
(Inductive step) Assume the equation holds for n, and consider this
equation. Add fn+1

2 to both sides:

f0
2 + f1

2 + · · · + fn
2 + fn+1

2 = fn · fn+1 + fn+1
2.

The right-hand side is then fn+1(fn + fn+1). By the definition of the
Fibonacci numbers, this is fn+1 · fn+2, which is exactly what we wanted to
show.
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Another Fibonacci example

Theorem

The n-th Fibonacci number is always less than 2n.

Proof.

(Base case

s

) f0 = 0 < 20 = 1 and f1 = 1 < 21 = 2.
(Inductive step) Assume fn < 2n and fn+1 < 2n+1. Then,

fn+2 = fn + fn+1 < 2n + 2n+1 < 2 · 2n+1 = 2n+2.

With common induction, we assume the result is true for the immediate
prior natural number, and use that to prove the result for a new number.
But we could instead assume the result is true for the two prior natural
numbers (at the cost of needing an extra base case). The extreme version
of this—which the book calls strong induction—is assuming the result is
true for all smaller natural numbers to prove it’s true for a new number.
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An example: base-2 representations

Theorem

Every natural number has a unique base-2 representation.

Most commonly, we write numbers in base-10.

For example,

7302 = 7 · 103 + 3 · 102 + 0 · 101 + 2 · 100.

But we can also write numbers in different bases. In base-2, the only bits
(= binary digits) are 0 and 1.

110101 = 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20.

We don’t write leading zeros, unless we’re writing the number zero itself,
which we do as 0.
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An example: base-2 representations

Theorem

Every natural number can be expressed as a sum of powers of 2.

Proof.

(base case) 0 is the empty sum—the sum of zero numbers—so it trivially
is a sum of powers of 2.
(Inductive step) Suppose n = 2m1 + 2m2 + · · · + 2mk is uniquely expressed
as a sum of powers of 2, where m1 < m2 < · · · < mk . Then,

1 + n = 20 + 2m1 + 2m2 + · · · + 2mk .

If n didn’t include 20 in its expression in powers of 2—that is, if n is
even—then we are done. Otherwise, we have to carry the 1: combine the
two 20 terms to get 21 = 20 + 20. And now we repeat this process. If n
had no 21 term, we are done. Otherwise, carry the 1, and combine the two
21 terms to get 22. Keep doing this process until we stop.
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An example: base-2 representations

Theorem

Every natural number can be expressed as a sum of powers of 2.

Alternate proof using stong induction.

It’s easy to check the n = 0 case, so let’s consider the n > 0 case.
Suppose that each m < n can be expressed as a sum of powers of 2.

Let k be the largest integer so that 2k ≤ n. (This is where we use n > 0.)
Then, n = 2k + m for some integer m < 2k ≤ n. So adding 2k to the
binary expansion for m gives a binary expansion for n. We don’t need to
worry that 2k appears in the binary expansion for m because m < 2k .

We still have to prove that binary expansions are unique.
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An example: base-2 representations

Theorem

Every natural number can be uniquely expressed as a sum of powers of 2.

We will prove this by strong induction.

Proof.

Consider a natural number n, and suppose that all natural numbers m < n
have unique expressions as sums of powers of 2.
Let k be the largest number so that 2k ≤ n, so that n = 2k + m for some
m < 2k ≤ n. Observe that 2k must appear in the binary expression of n,
as 2k+1 > n and summing up all the powers of 2 below k give 2k − 1 < n.
So adding 2k to the unique binary expression for m gives a unique binary
expression for n.
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