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Previously in Math 321

When we talked about number theory, many of our proofs ended up
relying on mathematical induction or, in another guiese, the least number
principle.

All over mathematics it is common to use proofs by induction, so let’s
discuss induction in more detail.

Also, induction is a fundamental property about the natural numbers,
a principle which underlies other facts about the natural numbers.
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The least number principle

If there is a natural number with a property, there is a smallest
natural number with that property.

If X ⊆ N is nonempty, then X has a smallest element.

You don’t have to start counting from 0 for this; it’s still true if you say
“positive integer” instead of “natural number”, or even “integer > k”
instead of “natural number”.
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A simple example

Theorem

For any finite list n1, n2, . . . , nk of integers, there is a smallest natural
number which is a multiple of all of them, called their least common
multiple.

Proof.

Observe that |n1n2 · · · nk | is a natural number which is a common multiple
of all these ni . So there is a smallest common multiple.

I won’t prove it, but in fact there is a formula for the least common
multiple:

lcm(n1, n2, . . . , nk) =
|n1n2 · · · nk |

gcd(n1, n2, . . . , nk)
,

where gcd(· · · ) is the greatest common divisor.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Mathematical Induction Spring 2021 4 / 12



Mathematical induction

Let P(n) be a predicate about natural numbers. If for each n we have
that P(k) for all k < n implies P(n), then P(n) is true for every
n ∈ N.

Suppose X ⊆ N is a set of natural numbers. If for each n we have
that k ∈ X for all k < n implies n ∈ X , then X = N.

Note that the statement about each n is itself an if-then statement (just
phrased in different language). One way to think about induction is that it
allows you to use extra information to prove something about all natural
numbers.

(Direct proof) Consider an arbitrary n and prove P(n).

(Inductive proof) Consider an arbitrary n, assume P(k) for all k < n,
and then prove P(n).
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Mathematical Induction Spring 2021 5 / 12



An example we’ve seen before

Theorem (Fundamental theorem of arithmetic, existence)

Every positive integer can be expressed as a product of primes.

Proof.

We prove this by induction. The case n = 1 is trivial, so consider the
n > 1 case. Assume that we have the result for all k < n. There are now
two cases. If n is prime, then its prime factorization is n = n, so we are
trivially done. Otherwise, n is a product of two smaller positive integers,
say n = ab. By indctive hypothesis, a and b each have prime
factorizations. Multiplying together their factorizations gives a prime
factorization for n.

One way to think of this is, we reduced the problem of finding a prime
factorization for n to finding a prime factorization for smaller numbers. If
we can reduce a problem to a smaller problem, then induction says that’s
always enough to find a solution.
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Different looks at the same phenomenon

Theorem

The least number principle and induction are equivalent.

Proof that LNP → induction.
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Yet another way to formulate this phenomenon

Here’s yet another way to formulate induction:

There is no infinite strictly decreasing sequence of natural numbers.
In other words, if you have an infinite descending sequence

n1 ≥ n2 ≥ · · · ≥ nk ≥ · · ·

of natural numbers, then the sequence is eventually constant—for all
large enough k, the values nk must all be the same.
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An application: computing the gcd

Lemma

Let a and b be positive integers, and suppose b = aq + r is the Euclidean
division for b divided by a. Then,

gcd(a, b) = gcd(a, r).

Since r < b, this says that we can replace a calculation of the gcd of two
integers with two smaller integers. Since we are counting down in the
integers, we have to eventually hit 0, in which case we use gcd(x , 0) = x
to get the answer.

Proof.

Homework :)
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A convenient form for induction

Mathematical induction can also be formulated as, what the book calls
common induction:

Let X ⊆ N be a set of natural numbers. If 0 ∈ X and if n ∈ X implies
n + 1 ∈ X for all n, then X = N.

This gives rise the following strategy for proving some predicate P(n)
holds for all natural numbers n:

1 (Base case) First prove P(0). This is often, though not always, trivial.

2 (Inductive step) Then prove if P(k) then P(k + 1).
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An example

Theorem

For any natural number n,

n∑
i=0

i = 0 + 1 + · · ·+ n =
n(n + 1)

2
.

Proof.

(Base case) 0 = 0 · 1/2.
(Inductive step) Assume that

∑k
i=0 i = k(k + 1)/2. Then, by inductive

hypothesis,

k+1∑
i=0

i =

(
k∑

i=0

)
+ (k + 1) = k(k + 1)/2 + (k + 1).

Some algebra gives that this is k2+3k+2
2 = (k+1)(k+2)

2 .
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