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The bridgens of Königsberg

A challenge: Can you take a stroll through town and cross each bridge exactly once?
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Graphs

A graph is a collection of vertices and edges,
where each edge joins two vertices.

There is a lot of variance in how different
authors define graphs.

Do you allow self-edges, where a vertex is
joined to itself? Or can edges only join
distinct vertices?

Do you allow multiple edges between the
same two vertices? Or is there at most
one edge between two vertices?

Do all edges go both ways? Or can they
be one-way?

How you answer these questions depends on
what your applications are. What sort of
phenomenon are you representing with graphs?

Sometimes you may want to consider both
answers, and so put an adjective in the front to
identify which case you are looking at.

For the purposes of this class, the answers are:
Yes, Yes, Yes.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Graph Theory Spring 2021 3 / 13



Graphs

A graph is a collection of vertices and edges,
where each edge joins two vertices.

There is a lot of variance in how different
authors define graphs.

Do you allow self-edges, where a vertex is
joined to itself? Or can edges only join
distinct vertices?

Do you allow multiple edges between the
same two vertices? Or is there at most
one edge between two vertices?

Do all edges go both ways? Or can they
be one-way?

How you answer these questions depends on
what your applications are. What sort of
phenomenon are you representing with graphs?

Sometimes you may want to consider both
answers, and so put an adjective in the front to
identify which case you are looking at.

For the purposes of this class, the answers are:
Yes, Yes, Yes.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Graph Theory Spring 2021 3 / 13



Graphs and relations

If you don’t allow multiple edges between
vertices, you can represent graphs as relations.

In this cotnext, a graph can be represented as
a vertex set V with an edge relation E on V ,
where a E b if there is an edge joining a to b.

You can think of graphs, in the general
multi-edge context, as generalizing relations.
Not only can we say whether two points are
related, we can have them related in multiple
different ways.
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Some definitions

A path in a graph is a sequence of vertices
where each vertex in the sequence is
joined by an edge to the next one.

If we allow multiple edges between
vertices, we specify which edge we take
at each step.
If we don’t, it’s enough to simply list the
vertices.

A circuit or cycle is a path that starts and
ends at the same vertex.

A graph is connected if there is a path
between any two vertices in the graph.

The Königsberg bridge question, stated in this
language, becomes: Is there a circuit (or path)
through the Königsberg graph which uses each
edge exactly once.

Call such a circuit (path) a Eulerian
circuit (Eulerian path).
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The solution to the problem

The best way to solve a problem is to show it’s
unsolvable, and this is what Euler did.

Theorem (Euler)

A finite connected graph admits an Eulerian
circuit iff each vertex has even degree.

The degree of a vertex is the number of edges
which touch the vertex. (Self-edges are
counted twice, once for each end of the
self-edge.)

The vertices in the Königsberg graph have
degrees 3, 3, 3, and 5, so it doesn’t admit
a Eulerian circuit.
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Proving Euler’s theorem

Theorem (Euler)

A finite connected graph admits an Eulerian
circuit iff each vertex has even degree.

(⇒) Consider a finite connected graph and
consider an Eulerian circuit for that graph.
Look at an arbitrary vertex v in the graph.

The circuit has to visit v , since the graph is
connected. And when it visits v it comes in via
an edge and then out via another edge. So
each time the circuit visits v gives a pair of
edges touching v . Thus, v has even degree.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Graph Theory Spring 2021 7 / 13



Proving Euler’s theorem

Theorem (Euler)

A finite connected graph admits an Eulerian
circuit iff each vertex has even degree.

(⇒) Consider a finite connected graph and
consider an Eulerian circuit for that graph.
Look at an arbitrary vertex v in the graph.

The circuit has to visit v , since the graph is
connected. And when it visits v it comes in via
an edge and then out via another edge. So
each time the circuit visits v gives a pair of
edges touching v . Thus, v has even degree.
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Proving Euler’s theorem

Theorem (Euler)

A finite connected graph admits an Eulerian
circuit iff each vertex has even degree.

(⇐) Consider a finite connected graph and
suppose every vertex has even degree. We need
to construct an Eulerian circuit for the graph.
Our strategy will be, essentially, to show that
any random attempt to build a circuit will do.

Fix a vertex v0 to be the starting point.
Imagine you depart from v0 by an edge, and
then keep traveling along edges until you
return to v0.

Claim: No matter how you do this, you
eventually return to v0.

When you visit a new vertex, you then leave it,
using up two of its edges. Since each vertex
has even degree, the only way you can get
stuck is to arrive at a vertex with only an odd
number of unused edges. But the only such
vertex is v0 itself.

If this circuit is an Eulerian circuit, we are
done. Otherwise, we need to modify it with a
detour.
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Proving Euler’s theorem

Theorem (Euler)

A finite connected graph admits an Eulerian
circuit iff each vertex has even degree.

(⇐, cont) Suppose our circuit from v0 back to
itself is not an Eulerian circuit.

Claim: Our circuit goes through some
vertex v1 with extra unused edges.

There’s some vertex with an unused edge,
since by assumption our circuit is not Eulerian.
If all vertices in our circuit used all edges, then
this would mean we have a vertex which isn’t
reachable from the vertices in our circuit,
contradicting that the graph is connected.

Now fix this vertex v1. Repeating the process,
travel along v1, only using unused edges, until
you get back to v1. Just as before, eventually
you get back to where you started.

If the v0 circuit with the v1 detour is Eulerian,
then we are done. Else, we have to make
another detour, starting at a node v2. And we
may need yet more detours.

Claim: We can only take finitely many
detours.

Because the graph is finite, we eventually run
out of unused edges.

Starting at v0 and taking all detours, we get an
Eulerian circuit.
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What if we only want a path?

Theorem (Euler)

A finite connected graph admits an Eulerian
path iff there are at most two vertices with odd
degree.

Moreover, if there are no vertices with odd
degree, this path is a circuit. If there are
exactly two vertices with odd degree, those two
vertices must be the start and end vertices.

Why can’t we have exactly one node with odd
degree?

(⇒) Consider a graph and consider an Eulerian
path on the graph.

As in the circuit case, any middle node in the
path must have even degree, since we can pair
up edges in/out. So the only possible odd
degrees occur at the start/end vertices. And if
all nodes have even degree then, like in the
circuit case, the starting vertex must be the
ending vertex.
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What if we only want a path?

Theorem (Euler)

A finite connected graph admits an Eulerian
path iff there are at most two vertices with odd
degree.

(⇐) You could prove this directly, in a similar
way as we did the circuit case. But I’m lazy, so
I’ll get it as a corollary.

Consider a graph with
at most two vertices of odd degree. If no nodes
have odd degree, then we get a circuit. So
suppose we have two vertices of odd degree,
call them s and e.

Consider a new graph, with the same vertices,
where we add a new edge between s and e.

In this larger graph, every vertex has even
degree. So it admits an Eulerian circuit. Now
observe that if we remove the s to e edge from
the circuit, we get an Eulerian path for the
original graph. Done.
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Planar graphs

A graph is planar if it can be drawn in the
plane so that no edges overlap.

Equivalently, a graph is planar if it can be
drawn on a sphere so that no edges overlap.

You can think of polyhedra as giving planar
graphs: the vertices of the graph are the
vertices of the polyhedron and the edges of the
graph are the edges of the polyhedron.

Drawn in the plane, the faces of the
polyhedron correspond to regions, including the
unbounded outside region.
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Euler characteristic

Given a graph, its Euler characteristic is

v − e + f ,

where v is the number of vertices, e is the
number of edges, and f is the number of faces.

Theorem

The Euler characteristic of any finite nonempty
connected planar graph is 2.

Let’s prove this. We’ll do it by induction on
the number of edges.

The base case is 0 edges and 1 vertex. So
there’s one facing, giving v − e + f = 2.

For the inductive step, we have to consider
different ways to add an edge:

(Add an edge connecting to a new
vertex.) Then we increased v and e by 1
each but didn’t change f , so the Euler
characteristic stays 2.

(Add an edge between two old vertices.)
Then we increased e and f by 1 each but
didn’t change v , so the Euler
characteristic stays 2.

And these are the only two ways to add a new
edge, so we’re done!
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