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An example

Let's play the game Twenty-One. There's two players, who take turns
counting up to twenty-one, starting at one. On each turn you can say the
next one, two, or three numbers, no fewer and no more. The winner is

whomever says twenty-one.
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The first player has a winning strategy for Twenty-One. If they play
their opponent plays.

according to this strategy they will always win the game, no matter how
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The first player has a winning strategy for Twenty-One. If they play
according to this strategy they will always win the game, no matter how
their opponent plays.

ultimately 21.

Here's the strategy: you want to end your turn on 1, 5, 9, 13, 17, or
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Twenty-One

Theorem

The first player has a winning strategy for Twenty-One. If they play
according to this strategy they will always win the game, no matter how
their opponent plays.

Proof.

Here's the strategy: you want to end your turn on 1, 5, 9, 13, 17, or
ultimately 21. If you end your turn on one of these, then your opponent
can only add 1, 2, or 3 to it, allowing to respond by ending on the next
number on the list. Since you can end on 1 for your first turn, this means
you can put yourself in a winning position and then win by ensuring you
never leave this position. ]
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A generalized example

Let's generalize. Instead of counting up by up to 3 with a goal of 21, we
could make the step size and goal any natural numbers. Let’s call the
game with goal n and step size s as G(n, s), so Twenty-One was G(21,3).
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Consider the game G(n,s). The second player has a winning strategy iff n
is a multiple of s + 1; otherwise the first player has a winning strategy.
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The generalized example

Theorem

Consider the game G(n,s). The second player has a winning strategy iff n
is a multiple of s 4+ 1, otherwise the first player has a winning strategy.

Proof.

The winning startegy, in either case, is the same: you want to end your
turn on the numbers with the same remainder r as n divided by s + 1.

r,s+14+r,2s+24r,...,n

Because these are spaced out by exactly s + 1, no matter what move your
opponent plays you can respond to stay in your winning position.
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The generalized example

Theorem

Consider the game G(n,s). The second player has a winning strategy iff n
is a multiple of s 4+ 1, otherwise the first player has a winning strategy.

Proof.
The winning startegy, in either case, is the same: you want to end your
turn on the numbers with the same remainder r as n divided by s + 1.

r,s+14+r,2s+24r,...,n

Because these are spaced out by exactly s + 1, no matter what move your
opponent plays you can respond to stay in your winning position.

If nis a multiple of s+ 1, this remainder is 0, so the first player cannot end
their first turn in a winning position, so it is the second player who can
force to be in a winning position. Otherwise, the remainder is 1 < r <'s,
so the first player can get in a winning position on the first move. O]
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Buckets of fish

Recall the buckets of fish game we talked about earlier as part of an
example of an inductive proof. There are finitely many buckets arranged in
a row, and each starts with some finite number of fish. Each turn, a player
removes a fish from one bucket and puts as many new fish as they like in
any of the buckets to its left. The winner is whomever takes the last fish.
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Buckets of fish

Recall the buckets of fish game we talked about earlier as part of an
example of an inductive proof. There are finitely many buckets arranged in
a row, and each starts with some finite number of fish. Each turn, a player
removes a fish from one bucket and puts as many new fish as they like in
any of the buckets to its left. The winner is whomever takes the last fish.

We saw that any game of buckets of fish must eventually end, but must it
be that one of the two players has a winning strategy? Or could it be that
for every game each player has a shot at winning no matter how their
opponent plays?

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 6 /22



The winning strategy for buckets of fish is to play so that every bucket has
an even number of fish at the end of their turn.
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Winning at buckets of fish

Theorem
The winning strategy for buckets of fish is to play so that every bucket has
an even number of fish at the end of their turn.

Like with Twenty-One, you want to get into a winning position so that no matter
how your opponent plays you can respond to stay in a winning position.

Proof.

Observe that after you take the last fish, all buckets have 0 fish, an even number
for each.

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 7/22



Winning at buckets of fish

Theorem

The winning strategy for buckets of fish is to play so that every bucket has
an even number of fish at the end of their turn.

Like with Twenty-One, you want to get into a winning position so that no matter
how your opponent plays you can respond to stay in a winning position.

Proof.

Observe that after you take the last fish, all buckets have 0 fish, an even number
for each. Next, notice that if there's a bucket with an odd number of fish, then
you can take one fish from the right-most odd bucket, making it even, and add
fish to more left odd buckets to make them odd. So you can get back to the
winning position. On the other hand, when your opponent faces an all even
setup, because they have to take only one fish from a bucket, they make it odd,
keeping them out of the winning position.
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Winning at buckets of fish

Theorem

The winning strategy for buckets of fish is to play so that every bucket has
an even number of fish at the end of their turn.

Like with Twenty-One, you want to get into a winning position so that no matter
how your opponent plays you can respond to stay in a winning position.

Proof.

Observe that after you take the last fish, all buckets have 0 fish, an even number
for each. Next, notice that if there's a bucket with an odd number of fish, then
you can take one fish from the right-most odd bucket, making it even, and add
fish to more left odd buckets to make them odd. So you can get back to the
winning position. On the other hand, when your opponent faces an all even
setup, because they have to take only one fish from a bucket, they make it odd,
keeping them out of the winning position. Since the game will eventually end, by
staying in this position you ensure you will win when the game finally comes to an
end. L]

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 7/22



Can we generalize?

@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has

a winning strategy?

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 8 /22



Can we generalize?

@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has
a winning strategy?

Let's start by looking for counterexamples, so that we can find a boundary

of where we cannot generalize.

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 8 /22



Can we generalize?

@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has
a winning strategy?

Let's start by looking for counterexamples, so that we can find a boundary

of where we cannot generalize.
e (Games with randomness)

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 8 /22



Can we generalize?

@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has
a winning strategy?

Let's start by looking for counterexamples, so that we can find a boundary
of where we cannot generalize.

@ (Games with randomness) There's no guaranteed strategy to win in
the game where you flip a coin to decide the winner.

e (Games with > 2 players)

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 8 /22



Can we generalize?

@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has
a winning strategy?

Let's start by looking for counterexamples, so that we can find a boundary
of where we cannot generalize.

@ (Games with randomness) There's no guaranteed strategy to win in
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e (Games with > 2 players) Consider the game with three players A, B,
and C, which has one inning: Player A decides which of B or C wins,
and then the game ends. No one has a winning strategy here.
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@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has
a winning strategy?

Let's start by looking for counterexamples, so that we can find a boundary
of where we cannot generalize.

@ (Games with randomness) There's no guaranteed strategy to win in
the game where you flip a coin to decide the winner.

e (Games with > 2 players) Consider the game with three players A, B,
and C, which has one inning: Player A decides which of B or C wins,
and then the game ends. No one has a winning strategy here.

e (Games with draws)
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Can we generalize?

@ In all the examples we've seen so far, it was always the case that
someone has a winning strategy. (And the textbook has more
examples of games with winning strategies.) Can we generalize this?
What sort of general statement can we make about when a game has
a winning strategy?

Let's start by looking for counterexamples, so that we can find a boundary
of where we cannot generalize.

@ (Games with randomness) There's no guaranteed strategy to win in
the game where you flip a coin to decide the winner.

e (Games with > 2 players) Consider the game with three players A, B,
and C, which has one inning: Player A decides which of B or C wins,
and then the game ends. No one has a winning strategy here.

@ (Games with draws) In tic-tac-toe any player can force a draw, so
there is no winning strategy. Or a simpler example: the game where
each player does nothing and then it ends in a draw.

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 8 /22



Can we generalize?

@ (Games with randomness) In general, there's no way to handle this.
You can investigate strategies that have high probability of winning,
and this is an area of ongoing mathematical investigation. but that’s
taking us away from the question of a guaranteed winning
strategy—and also it gets really hard fast—so let’s not consider these.
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Can we generalize?

@ (Games with randomness) In general, there's no way to handle this.
You can investigate strategies that have high probability of winning,
and this is an area of ongoing mathematical investigation. but that’s
taking us away from the question of a guaranteed winning
strategy—and also it gets really hard fast—so let’s not consider these.

@ (Games with > 2 players) These are also hopeless for a general
theory, so let's exclude these two.

o (Games with draws) Here, maybe we can amend things to say that
either a player has a winning strategy or everyone can force a draw.
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Abstract games

Let’s consider games which satisfy the following properties.

@ (Two player) There are exactly two players, who take turns making
moves. Let's call them Achilles and Patroclus.

@ (Non-random) There is no chance involved; every outcome is
determinate.
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@ (Two player) There are exactly two players, who take turns making
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@ (Non-random) There is no chance involved; every outcome is
determinate.

o (Perfect information) There is no hidden information. In particular,
each player is assumed to know what previous moves have been made.
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@ (Non-random) There is no chance involved; every outcome is
determinate.

o (Perfect information) There is no hidden information. In particular,
each player is assumed to know what previous moves have been made.

o (Finite) The game always ends after finitely many turns; no play of
the game is infinite in length. (This condition is also called being
clopen.)
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Abstract games

Let’s consider games which satisfy the following properties.

@ (Two player) There are exactly two players, who take turns making
moves. Let's call them Achilles and Patroclus.

@ (Non-random) There is no chance involved; every outcome is
determinate.

o (Perfect information) There is no hidden information. In particular,
each player is assumed to know what previous moves have been made.

o (Finite) The game always ends after finitely many turns; no play of
the game is infinite in length. (This condition is also called being
clopen.)

We will consider both games with draws and games without.

K Williams (U. Hawai'i @ Manoa) Math 321: The theory of games Spring 2021 10 / 22



Game Trees

When thinking about games in abstract generality, it turns out to be useful
to think of them as trees. A position in the game can be thought of as the
sequence of legal moves which led up to it. We can then order the
positions in a tree—a position is below another if it's a longer sequence of
moves—and this tree represents every possible play of the game.
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Game Trees

When thinking about games in abstract generality, it turns out to be useful
to think of them as trees. A position in the game can be thought of as the
sequence of legal moves which led up to it. We can then order the
positions in a tree—a position is below another if it's a longer sequence of
moves—and this tree represents every possible play of the game.

Because the game is finite, this tree has no infinite paths. It might have

infinite width, but any play through the game eventually stops at some
terminal position, which is either winning for one player or else is a draw.
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draws, one player has a winning strategy.

In any finite, non-random, two-player game of perfect information without
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The fundamental theorem of finite games

Theorem (Zermelo 1913)

In any finite, non-random, two-player game of perfect information without
draws, one player has a winning strategy.

The idea is to use the game tree to define the winning strategy. Each
terminal position can be labeled with the name of the player who wins at
that position. We can then build upward, labeling more and more of the
tree, until we reach the starting position.
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The fundamental theorem of finite games

Theorem (Zermelo 1913)

In any finite, non-random, two-player game of perfect information without
draws, one player has a winning strategy.

The idea is to use the game tree to define the winning strategy. Each
terminal position can be labeled with the name of the player who wins at
that position. We can then build upward, labeling more and more of the
tree, until we reach the starting position. Given a position in the tree:

o If it is Achilles’s turn, we look to see if there is a position he can play
to which we have labeled with A. If so, we label the position with A.
Else, if every next position is labeled with P, we label the position
with P.

o If it is Patroclus’s turn, we do the same but backward. If there is a
position he can play to labeled P, we label the current position with
P, else we label it with A.
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The fundamental theorem of finite games

Theorem (Zermelo 1913)

In any finite, non-random, two-player game of perfect information without
draws, one player has a winning strategy.

The idea is to use the game tree to define the winning strategy. Each
terminal position can be labeled with the name of the player who wins at
that position. We can then build upward, labeling more and more of the
tree, until we reach the starting position. Given a position in the tree:

o If it is Achilles’s turn, we look to see if there is a position he can play
to which we have labeled with A. If so, we label the position with A.
Else, if every next position is labeled with P, we label the position
with P.

o If it is Patroclus’s turn, we do the same but backward. If there is a
position he can play to labeled P, we label the current position with
P, else we label it with A.

This is a form of induction on the tree.
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The fundamental theorem of finite games

Proof.

We label every position in the game tree by induction. We start with the
terminal positions as the base cases. These we label according to who wins
if play reaches that position: A if Achilles wins, P if Patroclus wins.
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The fundamental theorem of finite games

Proof.

We label every position in the game tree by induction. We start with the
terminal positions as the base cases. These we label according to who wins
if play reaches that position: A if Achilles wins, P if Patroclus wins. Now
we inductively build upward. Consider a position where we've already
labeled every further position in the game. If it is Achilles's turn, label the
position with A if he can play to reach a position labeled A. Otherwise, if
all subsequent positions are labeled P, then label the current position with
P. If it is Patroclus’s turn, label the position with P if he can play to
reach a position labeled P. Otherwise, label the position with A.
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The fundamental theorem of finite games

Proof.

We label every position in the game tree by induction. We start with the
terminal positions as the base cases. These we label according to who wins
if play reaches that position: A if Achilles wins, P if Patroclus wins. Now
we inductively build upward. Consider a position where we've already
labeled every further position in the game. If it is Achilles's turn, label the
position with A if he can play to reach a position labeled A. Otherwise, if
all subsequent positions are labeled P, then label the current position with
P. If it is Patroclus’s turn, label the position with P if he can play to
reach a position labeled P. Otherwise, label the position with A. This
induction process is valid because every path through the tree is finite. So
every position gets a label, including the starting position. O]
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The fundamental theorem of finite games

Proof.

If the starting position is labeled A, then Achilles has a winning strategy:
he always plays to an A position, which is possible by the recursive
construction of the labels. Then, on Patroclus's turn, he has no choice but
to play to an A position, so Achilles stays in a winning position, ensuring

his eventual victory.
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The fundamental theorem of finite games

Proof.

If the starting position is labeled A, then Achilles has a winning strategy:
he always plays to an A position, which is possible by the recursive
construction of the labels. Then, on Patroclus's turn, he has no choice but
to play to an A position, so Achilles stays in a winning position, ensuring
his eventual victory.

For the other possibility, if the starting position is labeled P, then Achilles
has no choice but to play to a P position. Patroclus can play to stay in a

P position, and Achilles will never have a chance to break Patroclus out of
his winning position. O
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What about games with draws?

Using the ideas from Zermelo's proof, we can also answer the case with
draws. We'll do this in two ways.

@ We modify the proof, allowing for draws.

@ We derive it as a corollary from the theorem without draws.
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force a draw.

In any finite, non-random, two-player game of perfect information allowing
draws, either one player has a winning strategy or else both players can
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In any finite, non-random, two-player game of perfect information allowing

draws, either one player has a winning strategy or else both players can
force a draw.

Like with before, the strategy is to label every position, except now we
need a label D for draws.
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Games with draws

Theorem

In any finite, non-random, two-player game of perfect information allowing

draws, either one player has a winning strategy or else both players can
force a draw.

Like with before, the strategy is to label every position, except now we
need a label D for draws.

o Label each terminal position with A, D, or P, depending on whether
it is a win for Achilles, a draw, or a win for Patroclus.
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Games with draws

Theorem

In any finite, non-random, two-player game of perfect information allowing

draws, either one player has a winning strategy or else both players can
force a draw.

Like with before, the strategy is to label every position, except now we
need a label D for draws.

o Label each terminal position with A, D, or P, depending on whether
it is a win for Achilles, a draw, or a win for Patroclus.

@ If a non-terminal position is at Achilles’s turn: If Achilles can play to
an A-labeled position, label the current position with A.

e Else if Achilles can play to a D-labeled position, label it D.
o Else, label it P.
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Games with draws

Theorem

In any finite, non-random, two-player game of perfect information allowing

draws, either one player has a winning strategy or else both players can
force a draw.

Like with before, the strategy is to label every position, except now we
need a label D for draws.

o Label each terminal position with A, D, or P, depending on whether
it is a win for Achilles, a draw, or a win for Patroclus.
@ If a non-terminal position is at Achilles’s turn: If Achilles can play to
an A-labeled position, label the current position with A.
e Else if Achilles can play to a D-labeled position, label it D.
o Else, label it P.
@ Patroclus's turns are handled similarly: If he can play to a P-labeled

position, label it P. Else if he can play to a D-labeled position, label
it D. Else, label it A.
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Now we have to see how this labeling of the game tree gives us either a
winning strategy or forced-draw strategies.
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Games with draws

Now we have to see how this labeling of the game tree gives us either a
winning strategy or forced-draw strategies.

o If the starting position is labeled A, then Achilles can play to an
A-labeled position, and Patroclus can never escape from A-labeled
positions. So Achilles can follow this strategy to ensure a win.
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Games with draws

Now we have to see how this labeling of the game tree gives us either a
winning strategy or forced-draw strategies.

o If the starting position is labeled A, then Achilles can play to an
A-labeled position, and Patroclus can never escape from A-labeled
positions. So Achilles can follow this strategy to ensure a win.

o If the starting position is labeled P, then Achilles must play to a P
condition. But then Patroclus can play to keep it labeled P, and
Achilles can never escape from P labels.
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Games with draws

Now we have to see how this labeling of the game tree gives us either a
winning strategy or forced-draw strategies.

o If the starting position is labeled A, then Achilles can play to an
A-labeled position, and Patroclus can never escape from A-labeled
positions. So Achilles can follow this strategy to ensure a win.

o If the starting position is labeled P, then Achilles must play to a P
condition. But then Patroclus can play to keep it labeled P, and
Achilles can never escape from P labels.

o If the starting position is labeled D, then Achilles cannot play to an A
position. But he can play to a D position. And on Patroclus’s turns,
he's in a symmetric situation. He cannot play to a P position, but he
can play to a D position. So if both always play to a D position, the
game will eventually end in a draw.
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Games with draws, as a corollary to games without draws

Consider a game G allowing draws. Let's define two new games, which
don't allow draws.

@ Gp is the game G, except that draws are counted as wins for Achilles.

@ Gp is the game G, except that draws are counted as wins for
Patroclus.
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Games with draws, as a corollary to games without draws

Consider a game G allowing draws. Let's define two new games, which
don't allow draws.

@ Gp is the game G, except that draws are counted as wins for Achilles.

@ Gp is the game G, except that draws are counted as wins for
Patroclus.

By the theorem for games without draws, both G4 and Gp admit winning
strategies.
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Games with draws, as a corollary to games without draws

Consider a game G allowing draws. Let's define two new games, which
don't allow draws.

@ Gp is the game G, except that draws are counted as wins for Achilles.

@ Gp is the game G, except that draws are counted as wins for
Patroclus.

By the theorem for games without draws, both G4 and Gp admit winning
strategies.

Observe that it cannot be that Achilles has a winning strategy for Gp while
Patroclus has a winning strategy for G4. So that leaves three possibilities.
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Games with draws, as a corollary to games without draws

@ Case 1: Achilles has a winning strategy for both G4 and Gp. Note
that his winning strategy for Gp is also a winning strategy for G,
since the only way he can win Gp is if he would've won G.
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Games with draws, as a corollary to games without draws

@ Case 1: Achilles has a winning strategy for both G4 and Gp. Note
that his winning strategy for Gp is also a winning strategy for G,
since the only way he can win Gp is if he would've won G.

@ Case 2: Patroclus has a winning strategy for both G4 and Gp. Then
he has a winning strategy for G, by playing according to the strategy
for Ga.
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Games with draws, as a corollary to games without draws

@ Case 1: Achilles has a winning strategy for both G4 and Gp. Note
that his winning strategy for Gp is also a winning strategy for G,
since the only way he can win Gp is if he would've won G.

@ Case 2: Patroclus has a winning strategy for both G4 and Gp. Then
he has a winning strategy for G, by playing according to the strategy
for Ga.

@ Case 3: Achilles has a winning strategy for G4 and Patroclus has a
winning strategy for Gp. So if they both play according to these
winning strategies, the only possibility is that G ends in a draw.
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that both players can force a draw.

@ Checkers. In 2007, a team of Canadian computer scientists calculated
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Examples

@ Checkers. In 2007, a team of Canadian computer scientists calculated
that both players can force a draw.

@ Connect-Four. In 1988 a programmer and a compsci PhD student
independently showed that the first player has a winning strategy for
Connect-Four.
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Examples

@ Checkers. In 2007, a team of Canadian computer scientists calculated
that both players can force a draw.

@ Connect-Four. In 1988 a programmer and a compsci PhD student
independently showed that the first player has a winning strategy for
Connect-Four.

@ Chess, when played according to tournament rules, is a finite game.
(There are rules to ensure the game doesn't last forever.) But it is
currently not known who has the winning strategy or whether it's
forced-draw strategies.

@ Go. Played on a 5 x 5 board, there is a known algorithm for the first
player to win. For the 19 x 19 board used in usual play, it is still an
open question to find a winning or forced-draw strategy.
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As long as we're abstracting from practical reality to mathematically

analyze games, we could ask: Why require games to be finite?
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What about infinite games?

As long as we're abstracting from practical reality to mathematically
analyze games, we could ask: Why require games to be finite?

Here's an example of a game which is infinite in length:

@ Achilles and Patroclus take turns playing the digits in the decimal
expansion of a number. After infinitely many turns, Achilles wins if
the number is rational, and Patroclus wins if the number is irrational.
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What about infinite games?

As long as we're abstracting from practical reality to mathematically
analyze games, we could ask: Why require games to be finite?

Here's an example of a game which is infinite in length:

@ Achilles and Patroclus take turns playing the digits in the decimal
expansion of a number. After infinitely many turns, Achilles wins if
the number is rational, and Patroclus wins if the number is irrational.

@ Patroclus has a winning strategy for this game: a number is rational
iff its decimal expansion is eventually periodic, so he just has to use
each turn to break whatever prior pattern.
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What about infinite games?

As long as we're abstracting from practical reality to mathematically
analyze games, we could ask: Why require games to be finite?

Here's an example of a game which is infinite in length:

@ Achilles and Patroclus take turns playing the digits in the decimal
expansion of a number. After infinitely many turns, Achilles wins if
the number is rational, and Patroclus wins if the number is irrational.

@ Patroclus has a winning strategy for this game: a number is rational
iff its decimal expansion is eventually periodic, so he just has to use
each turn to break whatever prior pattern.

Can we make a general statement about infinite games?
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What about infinite games?

As long as we're abstracting from practical reality to mathematically
analyze games, we could ask: Why require games to be finite?

Here's an example of a game which is infinite in length:

@ Achilles and Patroclus take turns playing the digits in the decimal
expansion of a number. After infinitely many turns, Achilles wins if
the number is rational, and Patroclus wins if the number is irrational.

@ Patroclus has a winning strategy for this game: a number is rational
iff its decimal expansion is eventually periodic, so he just has to use
each turn to break whatever prior pattern.

Can we make a general statement about infinite games?

@ This is hard.
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What about infinite games?

As long as we're abstracting from practical reality to mathematically
analyze games, we could ask: Why require games to be finite?

Here's an example of a game which is infinite in length:

@ Achilles and Patroclus take turns playing the digits in the decimal
expansion of a number. After infinitely many turns, Achilles wins if
the number is rational, and Patroclus wins if the number is irrational.

@ Patroclus has a winning strategy for this game: a number is rational
iff its decimal expansion is eventually periodic, so he just has to use
each turn to break whatever prior pattern.

Can we make a general statement about infinite games?

@ This is hard.

@ This is so hard, that the answer is independent of the usual axioms of
mathematics.
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What about infinite games?

As long as we're abstracting from practical reality to mathematically
analyze games, we could ask: Why require games to be finite?
Here's an example of a game which is infinite in length:

@ Achilles and Patroclus take turns playing the digits in the decimal
expansion of a number. After infinitely many turns, Achilles wins if
the number is rational, and Patroclus wins if the number is irrational.

@ Patroclus has a winning strategy for this game: a number is rational
iff its decimal expansion is eventually periodic, so he just has to use
each turn to break whatever prior pattern.

Can we make a general statement about infinite games?

@ This is hard.

@ This is so hard, that the answer is independent of the usual axioms of
mathematics.

Trying to generalize this as far as possible takes us to the cutting edge of

mathematical research, so we won't do so in this class.
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