
Math 321: Summing up a semester

Kameryn J Williams

University of Hawai‘i at Mānoa
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The goals of this class

The main goal of this was to introduce you to ways of mathematical thinking, so
that you are better prepared for further, deeper investigations of mathematics.

There’s two main parts of this:

Strategies for proofs

Proving if-thens, iffs, proof by contradiction, proof by induction, etc.

Some basic objects/language of math

Relations, functions, sets, bijections, isomorphisms, etc.

There’s also a third part:

How to write mathematics well, so that it is both rigorous and clear.

Learning to write mathematics well, like learning any kind of writing, is a long
process. I hope this semester has given you some practice, but it’s a craft you
gradually improve on over time.

Let’s sum up some of what this semester was about.
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What to do if you’re asked to prove some mathematical statement?

1 Make sure you understand the statement,
and the definitions of any terms therein.

2 Understand the logical structure of the
statement, and thereby what strategies
you might use to try to prove it.

3 Understand what objects and assumptions
are given to you, and how you might use
them.

4 That might be enough for you to see what
to do, but in general it probably won’t. So
ask: what facts about these sorts of
objects do I already know? (This is a good
place to reference your notes or textbook.)

(Exercise 14.12) Prove that the order of
the real line (R, <) is isomorphic to the
order on the open interval (0, 1).

Two orders are isomorphic if there is an
isomorphism between them, a bijection which
preserves order.

This says there exists a certain object, an
isomorphism. The strategy is to exhibit an
object and show it has the right property.

We’re looking at the real line and an interval of
reals, so we want to look at functions R→ R.
Do we know a function R→ R whose range is
an interval and which preserves order?
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Summing up a semester Spring 2021 3 / 10



What to do if you’re asked to prove some mathematical statement?

1 Make sure you understand the statement,
and the definitions of any terms therein.

2 Understand the logical structure of the
statement, and thereby what strategies
you might use to try to prove it.

3 Understand what objects and assumptions
are given to you, and how you might use
them.

4 That might be enough for you to see what
to do, but in general it probably won’t. So
ask: what facts about these sorts of
objects do I already know? (This is a good
place to reference your notes or textbook.)

(Exercise 14.12) Prove that the order of
the real line (R, <) is isomorphic to the
order on the open interval (0, 1).

Two orders are isomorphic if there is an
isomorphism between them, a bijection which
preserves order.

This says there exists a certain object, an
isomorphism. The strategy is to exhibit an
object and show it has the right property.

We’re looking at the real line and an interval of
reals, so we want to look at functions R→ R.
Do we know a function R→ R whose range is
an interval and which preserves order?
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Another example

Prove that every nonempty linear order
with finitely many points has a maximum
and a minimum.

Rephrased: for every natural number
n > 0, if a linear order has n points then it
has a maximum and a minimum.

Thinking about this a bit, you might stumble
on the n = 2 case as the key one to think
about:

If x and y are two points in a linear order, then
by the trichotomy property of linear orders,
either x ≤ y or y ≤ x . So the smaller is the
minimum and the larger is the maximum.

Finite means the size is a natural number;
a maximum is a point larger than every
other, minimum is a point smaller than
every other.

This is a statement about all natural
numbers (> 0), in a “for all X s there
exists Y ” form.

One way to prove a statement about all
natural numbers is induction.

The usual way to prove a “for all X s there
exists Y ” statement is to assume you
have an X and exhibit a Y .
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Putting it all together into a written proof

Theorem

Every nonempty linear order with finitely many
points has a maximum and a minimum.

Proof:

First, observe that given two points x
and y in a linear order they have a maximum
max(x , y) and a minimum min(x , y). This is
beacuse, by trichotomy, either x ≤ y or y ≤ x ,
so the larger is the maximum and the smaller is
the minimum.

We now proceed by induction on the number
of points n in the order. The base case n = 1
is trivial: if the order has only one point x then
x is both the maximum and the minimum.

For the inductive step, assume that any linear
order with n points has a maximum and a
minimum. Consider a linear order with the
points x1, . . . , xn, xn+1. By the inductive
hypothesis, looking at just the points
x1, . . . , xn they have a maximum M0 and a
minimum m0. So M = max(M0, xn+1) is the
maximum and m = min(m, xn+1) is the
minimum of the n + 1 many points.
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Some common forms for mathematical statements

“If-then” or “for all-there exists”

If an object X has property P, then it has
property Q.

For any object X there is an object Y .

These are giving you an assumption to use,
and a goal to show.

Assume you have an object X with
property P. Try to show it has property Q.

Assume you have an object X . Try to
exhibit an object Y .

“Iff”

P if and only if Q.

This is equivalent to two if-then statements: if
P then Q, and if Q then P. Prove the two
if-then statements independently.

A special case: two sets are equal A = B
means that, for any object x that x ∈ A iff
x ∈ B. So to prove A = B prove if x ∈ A
then x ∈ B and if x ∈ B then x ∈ A.

Conjunctions: Many math statements are combinations joined by “and”s. (For example, f is a
bijection means f is an injection and f is a surjection.)

To prove “P and Q”, you prove P and you prove Q.
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If an object X has property P, then it has
property Q.

For any object X there is an object Y .
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More common forms for mathematical statements

There is a unique object X with property
P.

This asserts two things: there exists an object
X with P and if two objects both have
property P then they are the same. So you
need to prove two things:

There exists an object X with property P.

If X and Y both have property P, then
X = Y .

Disjunctions: P or Q.

This is equivalent to “if not P then Q”,
so prove that if-then statement. (Or prove
“if not Q then P”.)

Sometimes, you may be able to directly show
P or else directly show Q.
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Proof by contradiction

One way to prove a statement is true is prove
it’s impossible for it to be false.

To prove “not P”, assume P is true and
derive a contradiction, a statement of the
form “Q and not Q”.

To prove P, assume P is false and derive
a contradiction.

One advantage of this strategy is that it gives
you an extra assumption to use. One
disadvantage is your goal may be
unclear—which contradiction should you try to
derive?

Some examples from the semester:

To prove
√

2 is irrational we assumed it
was rational—that is, we assumed√

2 = p/q for integers p, q—and we
derived a contradiction—p and q both
had no common factors but also had 2 as
a common factor.

To prove R is uncountable we assumed it
was countable—that is, we assumed there
was an enumeration x0, x1, . . . of all
reals—and we derived a contradiction—we
found a real d not on the enumeration.
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Compound statements

The previous examples are the basic building
blocks, and they can be combined into more
complicated statements. To prove more
complicated statements, you want to break
them down step by step, using the various
strategies.

An example:

A set A is countable if and only if A = ∅
or else there is a surjection f : N→ A.

At the outermost level, this is an iff
statement, so we need to independently
prove two things:

If A is countable then A = ∅ or there is a
surjection f : N→ A.

Assume we have a countable set A—that
is, assume there is an injection
g : A→ N—and try to prove if A 6= ∅
then there is a surjection f : N→ A.

If A = ∅ or there is a surjection
f : N→ A, then A is countable.

Prove this by cases: If A = ∅ then A is
countable; and if there is a surjection
f : N→ A then A is countable.
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A final point: the importance of precise definitions

For the sort of precise logical reasoning
upon which mathematics is based to work,
we need clear-cut definitions which avoid
ambiguity.

(There’s a few concepts we used but
didn’t define—notably, natural number
and real number. They can be given
proper definitions, but it would’ve taken
away from the goals of the class to dig
into the gritty details, so we avoided it.)

On the cutting edge of mathematical
research, it’s not just about proving
statements, it’s also about figuring out
good, useful definitions.

In a mathematics classroom, the
definitions are given to you.

Usually, a definition is meant to capture
some intuitive concept. It’s important to
understand the intuition, to guide your
thinking.

But it’s also important to understand and
use the precise formal definition.

If you don’t remember the exact
statement of a definition, look in your
notes or textbook!
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Summing up a semester Spring 2021 10 / 10



A final point: the importance of precise definitions

For the sort of precise logical reasoning
upon which mathematics is based to work,
we need clear-cut definitions which avoid
ambiguity.

(There’s a few concepts we used but
didn’t define—notably, natural number
and real number. They can be given
proper definitions, but it would’ve taken
away from the goals of the class to dig
into the gritty details, so we avoided it.)

On the cutting edge of mathematical
research, it’s not just about proving
statements, it’s also about figuring out
good, useful definitions.

In a mathematics classroom, the
definitions are given to you.

Usually, a definition is meant to capture
some intuitive concept. It’s important to
understand the intuition, to guide your
thinking.

But it’s also important to understand and
use the precise formal definition.

If you don’t remember the exact
statement of a definition, look in your
notes or textbook!
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