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Discrete Mathematics

Discrete mathematics is the name given to the parts of math which studies
discrete structures, as opposed to continuous.

Combinatorics

Graph theory

Number theory

Some stuff in theoretical computer science
...

Let’s see some examples.
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Pointing at people

Imagine the following situation.

You are at a party with a large (but finite!) group of people.

The group decides that everyone will point at each other. You can
point at any number of people, including yourself, and you can point
at someone multiple times.

The question: Can you arrange things so that everyone is pointed at
more often than pointing to?

This may seem like a frivolous situation, and the framing certainly is. But
there is a real mathematical structure lurking here. In jargon the question
is: Given a finite directed graph, is it possible for every node in the graph
to have larger in-degree than out-degree?
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A negative answer

Theorem

You cannot have everyone pointed at more often than they point. That is,
there must be someone who points at least as often as they are pointed at.

Proof.

For each person, let their pointing number be the number of people they
are pointing at, and their receiving number be the number of people they
are pointing to. Let P be the sum of the pointing numbers and R be the
sum of the receiving numbers. I claim that P = R. This is because each
instance of pointing adds 1 each to P and R; if I point at you, that’s +1
to my pointing number and +1 to your receiving number. Now note that
if everyone’s pointing number were strictly less than their receiving
number, then we’d get P < R, because P would be the sum of a finite
series of numbers each of which is smaller than the corresponding
summands for R.
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Another way of thinking about this argument

Theorem

You cannot have everyone pointed at more often than they point. That is,
there must be someone who points at least as often as they are pointed at.

Proof.

Imagine that you could arrange
things so that everyone is pointed at
more often than they point to.

Here’s the setup. Everyone will give
$1 to each person they are pointing
at. Since everyone is pointed at more
than they point, this means everyone
makes a profit. And we can repeat
this as much as we like to get
everyone as much money as we want.
But this is clearly impossible, so it
must be that the situation is
impossible.
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We can also prove this by induction

Theorem

You cannot have everyone pointed at more often than they point. That is,
there must be someone who points at least as often as they are pointed at.

Proof.

The base case of zero people is trivial. Assume the statement is true for
groups of n people, and consider a group of n + 1 people. Suppose toward
a contradiction that everyone has larger receiving number than pointing
number. Let’s pick one person, call them Joel, to kick out of the group to
get a group of n people. Everyone Joel was pointing at will get a new
pointer. Someone who was pointing at Joel redirects their point. Since
Joel is pointed at more than pointing, there’s enough space to do this, and
any leftovers just don’t point. So we have a group of n people where
everyone has larger receiving number than pointing number, contradicting
the inductive hypothesis.
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Graph theory

As was mentioned earlier, this is an example of a theorem from graph
theory, a branch of discrete math that sees a lot of application in
computer science.

We’ll dig deeper into graph theory after spring break. But for now, let’s do
a little bit of combinatorics.
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Combinatorics

Combinatorics is the branch of mathematics about counting things.

Let’s see an example
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How many ways to write a number as a sum?

Question

Given a positive integer, how many different ways can you write it as a
sum of positive integers?

Let’s look at some examples:

1 can be written as a sum in only one way: 1 = 1.

2 can be written as a sum in two ways: 2 = 2 and 2 = 1 + 1.

3 can be writen as a sum in four ways? Or should that be three ways?

3 = 3; 3 = 2 + 1; 3 = 1 + 2; 3 = 1 + 1 + 1

This example shows that the answer depends on when we count two sums
as the same. Is 1 + 2 the same sum as 2 + 1?

Let’s answer the question where we count them differently—that is, where
order matters.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Some discrete mathematics Spring 2021 9 / 16



How many ways to write a number as a sum?

Question

Given a positive integer, how many different ways can you write it as a
sum of positive integers?

Let’s look at some examples:

1 can be written as a sum in only one way: 1 = 1.

2 can be written as a sum in two ways: 2 = 2 and 2 = 1 + 1.

3 can be writen as a sum in four ways? Or should that be three ways?

3 = 3; 3 = 2 + 1; 3 = 1 + 2; 3 = 1 + 1 + 1

This example shows that the answer depends on when we count two sums
as the same. Is 1 + 2 the same sum as 2 + 1?

Let’s answer the question where we count them differently—that is, where
order matters.
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Counting Sums

Theorem
We can express a positive integer n as a sum of one or more positive integers in

2n−1 many ways.

Like many counting problems, the trick is to turn this into an equivalent problem

that’s easier to count.

Proof.

Imagine you place down n many 1s in a row: 1 1 1 · · · 1 1.

In the spaces between the 1s we will either place a + or leave it blank. We
can then interpret that as a sum, grouping together a contiguous block
into one number. And observe that any sum for n can be represented this
way. For example, 1 1 + 1 1 1 + 1⇒ 2 + 3 + 1 gives one sum for 6.
There are n − 1 spaces between the 1s, and each binary choice is
independent, so that gives 2n−1 ways to place the +s.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Some discrete mathematics Spring 2021 10 / 16



Counting Sums

Theorem
We can express a positive integer n as a sum of one or more positive integers in

2n−1 many ways.

Like many counting problems, the trick is to turn this into an equivalent problem

that’s easier to count.

Proof.

Imagine you place down n many 1s in a row: 1 1 1 · · · 1 1.

In the spaces between the 1s we will either place a + or leave it blank. We
can then interpret that as a sum, grouping together a contiguous block
into one number. And observe that any sum for n can be represented this
way. For example, 1 1 + 1 1 1 + 1⇒ 2 + 3 + 1 gives one sum for 6.

There are n − 1 spaces between the 1s, and each binary choice is
independent, so that gives 2n−1 ways to place the +s.
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Permutations

Let’s count more things!

A permutation of a list of objects is a rearrangement of the objects that
list. (We include the trivial rearrangement where nothing moves.) Phrased
in mathy jargon, a permutation of a set is a one-to-one correspondence of
the set with itself.

The number of permutations for a list depends only upon the number of
objects in the list. Just what number is it?
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Permutations

Theorem

For a natural number n there are n! many permutations of a list of n
objects.

Proof by induction.

For the base case n = 0, observe that the only permutation of a list of 0
objects is the trivial permutation where nothing moves. So there are
1 = 0! many. For the inductive step, consider a list of n + 1 many objects.
How many choices do we have for what comes first in the rearrangement?
We have n + 1 many objects, so that’s n + 1 many choices. Now to put
the remaining objects in order is to rearrange a list of n objects. By
induction hypothesis we know there’s n! many ways to do this, for a total
of (n + 1)n! = (n + 1)! many rearrangements overall.
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Permutations

Theorem

For a natural number n there are n! many permutations of a list of n
objects.

Proof by induction.

For the base case n = 0, observe that the only permutation of a list of 0
objects is the trivial permutation where nothing moves. So there are
1 = 0! many.

For the inductive step, consider a list of n + 1 many objects.
How many choices do we have for what comes first in the rearrangement?
We have n + 1 many objects, so that’s n + 1 many choices. Now to put
the remaining objects in order is to rearrange a list of n objects. By
induction hypothesis we know there’s n! many ways to do this, for a total
of (n + 1)n! = (n + 1)! many rearrangements overall.
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Picking from a set

Suppose you have n objects, and you want to pick out k of them. How
many ways are there to do this?

The answer depends on whether we care about order.
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Picking in order

Theorem

Let k ≤ n be natural numbers. If you pick k objects from n where you
care about order, there are n!

(n−k)! many ways to do it.

Proof.

Imagine picking the objects one at a time, until you’ve picked all k . How
many choices are there for the first one? The second? And so on?
This gives a total of

n(n − 1) · · · (n − k + 1)

many ways to pick the objects. Now observe that

n!

(n − k)!
=

n(n − 1) · · · (n − k)(n − k − 1) · · · 1
(n − k)(n − k − 1) · · · 1

= n(n−1) · · · (n− k + 1).
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Picking where you don’t care about order

Theorem

Let k ≤ n be natural numbers. There are
(n
k

)
= n!

k!(n−k)! many ways to
pick k objects from n many, ignoring order.

Proof.

Observe that we can figure this out by counting how many ways there are
to pick where we care about order, then dividing out by how much we
overcounted—how many of the choices with order give the same choice
without order. We already the answered the first bit of this. For the
second, how much did we overcount? If we pick k objects, any
rearrangement of them gives the same selection, so we overcounted by a
factor of k!. In total, that gives n!

(n−k)!k! many ways to pick them.
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The pigeonhole principle

Theorem

If k < n are natural numbers there can be no one-to-one correspondence
from a group of n objects to a group of k objects.

Proof: By contradiction. Suppose otherwise,
and consider the smallest n so that there is a
one-to-one correspondence f from a set A of
n objects to a set B of k objects for some
k < n. Observe that it must be that n ≥ 2,
since if n = 1 the only possible value for k
could be 0 but that clearly allows no
one-to-one correspondence. Pick an object
a ∈ A and look at A \ {a}. Restrict f to
A \ {a} to get a one-to-one correspondence
from a set of size n − 1 to B \ {f (a)}. So n
was not actually least, a contradiction.

K Williams (U. Hawai‘i @ Mānoa) Math 321: Some discrete mathematics Spring 2021 16 / 16



The pigeonhole principle

Theorem

If k < n are natural numbers there can be no one-to-one correspondence
from a group of n objects to a group of k objects.

Proof: By contradiction. Suppose otherwise,
and consider the smallest n so that there is a
one-to-one correspondence f from a set A of
n objects to a set B of k objects for some
k < n. Observe that it must be that n ≥ 2,
since if n = 1 the only possible value for k
could be 0 but that clearly allows no
one-to-one correspondence. Pick an object
a ∈ A and look at A \ {a}. Restrict f to
A \ {a} to get a one-to-one correspondence
from a set of size n − 1 to B \ {f (a)}. So n
was not actually least, a contradiction.
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