Math 302: The method of undetermined coefficients

Kameryn J Williams

University of Hawai'i at Mānoa

Spring 2021

K Williams (U. Hawai'i @ Mānoa)

Math 302: Undetermined coefficients

Image: A matrix

- ∢ ∃ ▶

Spring 2021 1 / 11

Last week, we saw how to solve homogeneous linear differential equations with constant coefficients:

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0.$$

Image: Image:

Last week, we saw how to solve homogeneous linear differential equations with constant coefficients:

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0.$$

Find the roots of the characteristic polynomial

$$a_nr^n+\cdots+a_1r+a_0.$$

Each root r gives a solution $y = e^{rx}$. (With complications if r is complex or has multiplicity > 1.)

E SQA

Last week, we saw how to solve homogeneous linear differential equations with constant coefficients:

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0.$$

Find the roots of the characteristic polynomial

$$a_nr^n+\cdots+a_1r+a_0.$$

Each root r gives a solution $y = e^{rx}$. (With complications if r is complex or has multiplicity > 1.)

Starting this week, we will talk about how to solve nonhomogenous equations.

(日) (同) (三) (三) (三) (○) (○)

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

590

・ロト ・聞ト ・ヨト ・ヨト

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

Last Monday, we talked about how the general solution to this looks like

$$y_c(x)+y_p(x),$$

where y_c is the general solution to the homogeneous equation

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0$$

and y_p is a particular solution to the non-homogeneous equation.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

3 / 11

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

Last Monday, we talked about how the general solution to this looks like

$$y_c(x)+y_p(x),$$

where y_c is the general solution to the homogeneous equation

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0$$

and y_p is a particular solution to the non-homogeneous equation. This week is about one method for finding y_p , the method of undetermined coefficients. It only applies to the case where b(x) is a combination of terms of the form

$$a, x^k, e^{ax}, \cos(ax), \sin(ax).$$

(日) (同) (三) (三) (三) (○) (○)

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

Last Monday, we talked about how the general solution to this looks like

$$y_c(x)+y_p(x),$$

where y_c is the general solution to the homogeneous equation

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = 0$$

and y_p is a particular solution to the non-homogeneous equation. This week is about one method for finding y_p , the method of undetermined coefficients. It only applies to the case where b(x) is a combination of terms of the form

$$a, x^k, e^{ax}, \cos(ax), \sin(ax).$$

Specifically, what we need is that b(x) is a sum of terms each of which has only a finite number of linearly independent derivatives, a = b = b = b = b

K Williams (U. Hawai'i @ Mānoa)

An example

$$y'' + y' - 2y = x^2 - x$$

996

・ロト ・四ト ・ヨト ・ヨト

An example

$$y'' + y' - 2y = x^2 - x$$

First solve the homogeneous equation.

$$y''+y'-2y=0$$

э

・ロト ・日下・ ・ ヨト・

DQC

An example

$$y'' + y' - 2y = x^2 - x$$

First solve the homogeneous equation.

$$y''+y'-2y=0$$

So getting $x^2 - x$ on the righthand side cannot come from the solution to the homogeneous equation.

• • • • • • • • • • • •

DQC

Another example

$$y'' + 4y' = e^{-x}$$

900

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Yet another example

$$y'' - 2y' + 2y = \sin(2x) + 2\cos(x)$$

SQC

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient.

Image: A math a math

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient. But before we address this complication, let's sum up what to do when we don't have this complication.

Image: A math a math

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient. But before we address this complication, let's sum up what to do when we don't have this complication.

• If e^{ax} is part of b(x), then Ae^{ax} is part of y_p .

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient. But before we address this complication, let's sum up what to do when we don't have this complication.

- If e^{ax} is part of b(x), then Ae^{ax} is part of y_p .
- If cos(ax) is part of b(x), then A cos(ax) + B sin(ax) is part of y_p, and similarly if you have sin(ax).

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient. But before we address this complication, let's sum up what to do when we don't have this complication.

- If e^{ax} is part of b(x), then Ae^{ax} is part of y_p .
- If cos(ax) is part of b(x), then Acos(ax) + Bsin(ax) is part of y_p , and similarly if you have sin(ax).
- If x^k is part of b(x), then $Ax^k + Bx^{k-1} + \cdots + Ex + F$ is part of y_p .

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient. But before we address this complication, let's sum up what to do when we don't have this complication.

- If e^{ax} is part of b(x), then Ae^{ax} is part of y_p .
- If cos(ax) is part of b(x), then Acos(ax) + Bsin(ax) is part of y_p , and similarly if you have sin(ax).
- If x^k is part of b(x), then $Ax^k + Bx^{k-1} + \cdots + Ex + F$ is part of y_p .
- If you have a product, you need to look at all its linearly independent derivatives. For example, if x²e^{ax} is part of b(x), then Ax²e^{ax} + Bxe^{ax} + Ce^{ax} is part of y_p.

In the examples we've seen so far, the terms in b(x) weren't in y_c , the solution to the homogeneous coefficient. But before we address this complication, let's sum up what to do when we don't have this complication.

- If e^{ax} is part of b(x), then Ae^{ax} is part of y_p .
- If cos(ax) is part of b(x), then A cos(ax) + B sin(ax) is part of y_p, and similarly if you have sin(ax).
- If x^k is part of b(x), then $Ax^k + Bx^{k-1} + \cdots + Ex + F$ is part of y_p .
- If you have a product, you need to look at all its linearly independent derivatives. For example, if x²e^{ax} is part of b(x), then Ax²e^{ax} + Bxe^{ax} + Ce^{ax} is part of y_p.

In all cases, you need to determine the exact value of the coefficients A, B, C, \ldots

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 うらぐ

An example with the complication

$$y''-y=e^x$$

э

・ロト ・日下・ ・ ヨト・

590

An example with the complication

$$y''-y=e^x$$

 $y_c = c_1 e^x + c_2 e^{-x}$.

Math 302: Undetermined coefficients K Williams (U. Hawai'i @ Mānoa)

イロト イヨト イヨト イヨト

SAC

An example with the complication

$$y''-y=e^x$$

 $y_c = c_1 e^x + c_2 e^{-x}$. It cannot be that $y_p = A e^x$, as that would be a solution to y'' - y = 0. Instead, y_p depends on xe^x , similar to the repeated roots case for homogeneous equations.

イロト イ理ト イヨト イヨト

$$y'' + y = 2\cos x$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

900

Another example

$$y'' + y = 2\cos x$$

 $y_c = c_1 \cos x + c_2 \sin x.$

SAC

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$y'' + y = 2\cos x$$

 $y_c = c_1 \cos x + c_2 \sin x$. y_p will have an $x \cos x$ term.

イロト イヨト イヨト イヨト

590

$$y'' + y = 2\cos x$$

 $y_c = c_1 \cos x + c_2 \sin x$. y_p will have an $x \cos x$ term. Its derivative is $\cos x + x \sin x$, so we also need an $x \sin x$ term.

Image: A math a math

The general case

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

- Suppose the characteristic polynomial has a root *r* with multiplicity *m*, possibly *m* > 1.
- Let t(x) be the term of y_c coming from this root r. (So t(x) is an exponential function, trig function, or product of the two.)
- Morever, suppose b(x) contains a a term of the form $x^k t(x)$.

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

- Suppose the characteristic polynomial has a root *r* with multiplicity *m*, possibly *m* > 1.
- Let t(x) be the term of y_c coming from this root r. (So t(x) is an exponential function, trig function, or product of the two.)
- Morever, suppose b(x) contains a a term of the form $x^k t(x)$.

Then, y_p contains a term of the form $x^{k+m}t(x)$, and possibly also from its linearly independent derivatives.

$$a_n y^{(n)} + \cdots + a_1 y' + a_0 y = b(x)$$

- Suppose the characteristic polynomial has a root *r* with multiplicity *m*, possibly *m* > 1.
- Let t(x) be the term of y_c coming from this root r. (So t(x) is an exponential function, trig function, or product of the two.)
- Morever, suppose b(x) contains a a term of the form $x^k t(x)$.

Then, y_p contains a term of the form $x^{k+m}t(x)$, and possibly also from its linearly independent derivatives.

And you have to do this for each time this happens.

This method is based on b(x) and its derivatives only producing finitely many linearly independent terms.

This method is based on b(x) and its derivatives only producing finitely many linearly independent terms.

- Consider what happens if we try this with b(x) = 1/x.
- Then y_p has to contain a 1/x term.

▲ロ▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ▲ 国 ● のへで

This method is based on b(x) and its derivatives only producing finitely many linearly independent terms.

- Consider what happens if we try this with b(x) = 1/x.
- Then y_p has to contain a 1/x term.
- So then it has to contain a $1/x^2$ term.

(日) (同) (三) (三) (三) (○) (○)

This method is based on b(x) and its derivatives only producing finitely many linearly independent terms.

- Consider what happens if we try this with b(x) = 1/x.
- Then y_p has to contain a 1/x term.
- So then it has to contain a $1/x^2$ term.
- So it also has to contain a $1/x^3$ term.

11 / 11

This method is based on b(x) and its derivatives only producing finitely many linearly independent terms.

- Consider what happens if we try this with b(x) = 1/x.
- Then y_p has to contain a 1/x term.
- So then it has to contain a $1/x^2$ term.
- So it also has to contain a $1/x^3$ term.
- Continuing this pattern y_p has to contain a $1/x^n$ term for every positive integer n.

(日) (同) (三) (三) (三) (○) (○)

11 / 11

Finitely many linearly independent derivatives

What does it mean to say that f(x) has only finitely many linearly independent derivatives?

• It means that for some large enough n, $f^{(n)}(x)$ is linearly dependent with the previous derivatives.

Finitely many linearly independent derivatives

What does it mean to say that f(x) has only finitely many linearly independent derivatives?

- It means that for some large enough n, $f^{(n)}(x)$ is linearly dependent with the previous derivatives.
- That is, there are constants $a_n, \ldots a_1, a_0$ so that

$$a_n f^{(n)} + \cdots + a_1 f' + a_0 f = 0.$$

12 / 11

Finitely many linearly independent derivatives

What does it mean to say that f(x) has only finitely many linearly independent derivatives?

- It means that for some large enough n, $f^{(n)}(x)$ is linearly dependent with the previous derivatives.
- That is, there are constants $a_n, \ldots a_1, a_0$ so that

$$a_n f^{(n)} + \cdots + a_1 f' + a_0 f = 0.$$

- This is a homogeneous linear differential equation with constant coefficients. We know what solutions to these look like.
- They look like combinations of $a, x^k, e^{ax}, \cos(ax), \sin(ax)$.
- So that's why this method only works when b(x) is a combination of these.

<ロ > < 同 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >