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Undetermined coefficients

To solve an equation like

y ′′ + y ′ + y = x3

we guessed that a particular solution looks like

A + Bx + Cx2 + Dx3

Then we solve for the values of the coefficients.

What if, instead, to solve an equation like

ay ′′ + by ′ + cy = f (x)

we guessed that a particular solution looks like

A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + · · ·?

That is, we want to see what we can figure out
if we represent the solution as a power series.
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Power series

A power series is an infinite series of the form

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

We can also talk about power series centered at
an arbitrary point p rather than centered at 0:

∞∑
n=0

an(x−p)n = a0 +a1(x−p)+a2(x−p)2 +· · ·

A power series centered at p has a radius of
convergence R:

If R = 0 the series converges iff x = p.

If 0 < R <∞ the series converges if
|x − p| < R. At the end points x = p ± R
it may either converge or diverge

If R =∞ the series converges for any
value of x .

You can use convergence tests like you learned
in Calc II to figure out the radius of
convergence of a given power series.
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K Williams (U. Hawai‘i @ Mānoa) Math 302: Series methods Spring 2021 3 / 12



Power series

A power series is an infinite series of the form

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

We can also talk about power series centered at
an arbitrary point p rather than centered at 0:

∞∑
n=0

an(x−p)n = a0 +a1(x−p)+a2(x−p)2 +· · ·

A power series centered at p has a radius of
convergence R:

If R = 0 the series converges iff x = p.

If 0 < R <∞ the series converges if
|x − p| < R. At the end points x = p ± R
it may either converge or diverge

If R =∞ the series converges for any
value of x .

You can use convergence tests like you learned
in Calc II to figure out the radius of
convergence of a given power series.
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From power series to functions

∞∑
n=0

anx
n

If the interval of convergence of this power
series is nontrivial (i.e. R > 0), then the power
series defines a continuous function on the
interval p − R < x < p + R:

f (x) =
∞∑
n=0

anx
n.

Indeed, we can say more than just that f (x) is
continuous. It is differentiable, and we know its
derivative.

f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
k=0

(k + 1)xk+1x
k

That is, you get the derivative by
differentiating the power series term by term.

We can repeat this to find f ′′(x), f ′′′(x), and
so on. In particular, f (x) is infinitely
differentiable.

This works centered at p, not just centered at 0.

K Williams (U. Hawai‘i @ Mānoa) Math 302: Series methods Spring 2021 4 / 12



From power series to functions

∞∑
n=0

anx
n

If the interval of convergence of this power
series is nontrivial (i.e. R > 0), then the power
series defines a continuous function on the
interval p − R < x < p + R:

f (x) =
∞∑
n=0

anx
n.

Indeed, we can say more than just that f (x) is
continuous. It is differentiable, and we know its
derivative.

f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
k=0

(k + 1)xk+1x
k

That is, you get the derivative by
differentiating the power series term by term.

We can repeat this to find f ′′(x), f ′′′(x), and
so on. In particular, f (x) is infinitely
differentiable.

This works centered at p, not just centered at 0.
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From functions to power series

Consider a function given by a power series

f (x) =
∞∑
n=0

anx
n.

Using the facts about its derivatives we can
determine the coefficients a0, working
backward from the formula for the power series
of its derivative.

f (0) = a0

f ′(0) = a1

f ′′(0) = 2a2

f ′′′(0) = 6a3

f (n)(0) = n!an

So an = f (n)(0)
n! .

If we instead centered at p:

an =
f (n)(p)

n!
.

So we can write:

f (x) =
∞∑
n=0

f (n)(0)

n!
xn

for the power series for f (x). We call this its
Taylor series.
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Analytic functions

An analytic function is one which has a Taylor
series expansion centered at p for every p in its
domain.

Every analytic function is infinitely
differentiable.

But not every infinitely differentiable
function is analytic.

f (x) =

{
e−1/x2

if x 6= 0
0 if x = 0

has all its derivatives = 0 at x = 0, but
that would give a Taylor series of
0 + 0x + · · · = 0.

Let’s remember the Taylor series centered at 0
for some important functions:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

cos x = 0− x2

2!
+

x4

4!
− x6

6!
± · · ·

sin x = x − x3

3!
+

x5

5!
− x7

7!
± · · ·
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Solving differential equations using series

Let’s see a basic example: xy ′ − y = 0.

Guess that the solution is given by a
power series:

y = a0 + a1 + a2x
2 + · · ·

Then,

y ′ = a1 + 2a2x + 3a3x
2 + · · ·

Let’s plug these into the equation:

x(a1 + 2a2x + 3a3x
2 + · · · )

−(a0 + a1x + a2x
2 + · · · ) = 0 + 0x + 0x2 + · · ·

Combine like terms:

−a0 + 0x + a2x
2 + · · · = 0 + 0x + 0x2 + · · ·

Finally, solve for what values of the coefficients an
makes this true. In this case, we quickly see that a1

can be anything and an = 0 for n 6= 1.

So the solution is y = a1x , where a1 is an arbitrary
constant.
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can be anything and an = 0 for n 6= 1.

So the solution is y = a1x , where a1 is an arbitrary
constant.
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An existence theorem

y (n) + · · ·+ a1(x)y ′ + a0(x) = b(x)

If the coefficient functions ai (x) and the function b(x) are all analytic on the same
interval centered on p, then there is a unique solution satisfying the initial conditions

y(p) = v0, y ′(p) = v1, · · · , y (n−1)(p) = vn−1

which is also analytic in the interval.

In short, this result tells us that if all the parts of the equation are analytic functions,
then it’s valid to guess that the solution is given by a power series and use that to
determine the solution.

In particular, if the functions are all polynomials, exponential functions, sine/cosine,
or combinations thereof, then we get a solution which is valid for all of R.
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Approximating solutions

y ′′ − xy ′ + y = x , where y(0) = y ′(0) = 1

Guess that the solution is given by a power
series

y = a0 + a1x + a2x
2 + · · ·

We know a0 = y(0) and a1 = y ′(0), so those
are free. The rest we have to figure out by
plugging things in.

Solving for the first few terms:

y = 1 + x − x2

2
+

x3

6
− x4

24
+ · · ·
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Another example

(1 + x)y ′′ + y = ex

Let’s work out what an looks like in terms of previous coefficients, giving a recurrence relation.

Get:

a0 = arbitrary

a1 = arbitrary

an+2 =
1

n!
− nan+1

n + 2
− an

(n + 2)(n + 1)︸ ︷︷ ︸
=bn+2

So we can write the solution as

y = a0 + a1x +
∞∑
n=2

bnx
n,

where a0 and a1 are arbitrary constants. This

doesn’t give us a nice way to write the solution
in terms of elementary functions, but why
should we expect to always be able to do so?
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A more complicated example, finding an approximation

y ′′ + exy = 0, y(0) = y ′(0) = 1

For this one, we have to multiply two power
series!
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Singular versus ordinary points

y ′′ + a(x)y ′ + b(x)y = c(x)

Write your equation in the standard form
where the leading coefficient is 1.

Look at the coefficient functions a(x),
b(x), and c(x). If they are all analytic at
a point p then p is an ordinary point.

We can find a solution centered on p by
guessing that it is given by a power series
centered at p.

If one of the coefficient functions is not
analytic at p, we call it a singular point.

Usually, this is because one of the
functions is undefined at p.

For example, consider xy ′′ + y = 0.

Rewrite in the form y ′′ + y/x = 0.

Then the coefficient function 1/x is
undefined at x = 0, so 0 is a singular
point.

To find solutions at singular points is more
difficult, and uses methods we won’t learn in
this class. (Lesson 40 of the textbook discusses
one method, the Frobenius method.

For our purposes, it’s important to recognize
singular points so you know where the methods
we do learn don’t apply.

K Williams (U. Hawai‘i @ Mānoa) Math 302: Series methods Spring 2021 12 / 12



Singular versus ordinary points

y ′′ + a(x)y ′ + b(x)y = c(x)

Write your equation in the standard form
where the leading coefficient is 1.

Look at the coefficient functions a(x),
b(x), and c(x). If they are all analytic at
a point p then p is an ordinary point.

We can find a solution centered on p by
guessing that it is given by a power series
centered at p.

If one of the coefficient functions is not
analytic at p, we call it a singular point.

Usually, this is because one of the
functions is undefined at p.

For example, consider xy ′′ + y = 0.

Rewrite in the form y ′′ + y/x = 0.

Then the coefficient function 1/x is
undefined at x = 0, so 0 is a singular
point.

To find solutions at singular points is more
difficult, and uses methods we won’t learn in
this class. (Lesson 40 of the textbook discusses
one method, the Frobenius method.

For our purposes, it’s important to recognize
singular points so you know where the methods
we do learn don’t apply.
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