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A higher-order differential equation is linear if it can be put into the
following form:

an(x)y(" + -+ a1(x)y’ + ao(x)y = b(x).
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Higher-order linear differential equations

A higher-order differential equation is linear if it can be put into the
following form:

an(x)y™ + -+ a1(x)y’ + ao(x)y = b(x).

If we want to solve equations like this one, the first question to ask is
whether it's even the case that they must be solvable.
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Existence and uniqueness of solutions

Theorem

an(x)y™ + -+ a(x)y’ + ao(x)y = b(x)

Consider this differential equation, where the coefficient functions a;(x)
and b(x) are all continuous on a common interval and the leading
coefficient function an(x) is not identically 0.
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Existence and uniqueness of solutions

Theorem

an(x)y™ + -+ a(x)y’ + ao(x)y = b(x)

Consider this differential equation, where the coefficient functions a;(x)
and b(x) are all continuous on a common interval and the leading
coefficient function an(x) is not identically 0.

Then, this equation has a unique solution satisfying the initial conditions

/ n—1
y(XO) =V, Y (Xl) = Vi, y( )(XO) = Vn-1,
where xg is a point in the interval and vy, v1,...,Vv,_1 are constants.
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Existence and uniqueness of solutions

Theorem

an(x)y™ + -+ a(x)y’ + ao(x)y = b(x)

Consider this differential equation, where the coefficient functions a;(x)
and b(x) are all continuous on a common interval and the leading
coefficient function an(x) is not identically 0.

Then, this equation has a unique solution satisfying the initial conditions

y(x0)=wv, Y'(a)=w, -- y("_l)(xo) = Vp_1,

where xg is a point in the interval and vy, v1,...,Vv,_1 are constants.

@ For now, we will take this theorem as given. We will talk a bit about
its proof at the end of the semester.
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Homogeneous linear ODEs

To solve these, we will first focus on those where the function on the right
is 0, i.e. the equation is of the form

a,,(x)y(”) + -+ a1(x)y’ + ao(x)y = 0.

We call these homogeneous linear differential equations.
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Existence and uniqueness of solutions

a,,(x)y(”) + -t ar(x)y’ + ao(x)y =0

Consider this homogeneous differential equation, where the coefficient
functions a;(x) are all continuous on a common interval and the leading
coefficient function an(x) is not identically 0.
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Existence and uniqueness of solutions

a,,(x)y(”) + -t ar(x)y’ + ao(x)y =0

Consider this homogeneous differential equation, where the coefficient
functions a;(x) are all continuous on a common interval and the leading
coefficient function a,(x) is not identically 0.
© This equation has n many linearly independent solutions
y1(x), y2(x), -+ ya(x).
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Existence and uniqueness of solutions

a,,(x)y(”) + -t ar(x)y’ + ao(x)y =0

Consider this homogeneous differential equation, where the coefficient
functions a;(x) are all continuous on a common interval and the leading
coefficient function a,(x) is not identically 0.

© This equation has n many linearly independent solutions
y1(x)s y2(x), - -+, yn(x).
© The linear combination

ye(x) = ayi(x) + caya(x) + -+ + cnyn(x)

is an n-parameter family of solutions for the equation. Indeed, every
solution takes this form.
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Getting from individual solutions to a general solution

Let's see why knowing n linearly independent solutions gives us an
n-parameter family of solutions. To make things readable, let’s look at the
second-order case.

ax(x)y” + a1(x)y’ + ao(x) =0

has solutions y1(x) and y»(x).
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Getting from individual solutions to a general solution

Let's see why knowing n linearly independent solutions gives us an
n-parameter family of solutions. To make things readable, let’s look at the
second-order case.

ax(x)y” + a1(x)y’ + ao(x) =0

has solutions y1(x) and y»(x).
@ By definition of what it means to be a solution,
a2y +ay; +aoy1 = 0 and ayy + a1y; + aoy2 = 0.
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Getting from individual solutions to a general solution

Let's see why knowing n linearly independent solutions gives us an
n-parameter family of solutions. To make things readable, let’s look at the
second-order case.

ax(x)y” + a1(x)y’ + ao(x) =0

has solutions y1(x) and y»(x).
@ By definition of what it means to be a solution,
ay] + a1y +aoy1 = 0 and a3 + a1y, + aoy2 = 0.
@ Let ¢; and ¢ be constants, then add these equations together:

ci(azyi + aiyg + aoy1) + c2(a2ys + aiys + aoy2) =0
a(ayy + cyy) + ai(cyr + cys) + ao(ciyr + coy2) =0
ay! + a1y, + agyc =0

@ So y. = c1y1 + cy» is a solution.
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Non-homogeneous differential equations

a,,(x)y(”) + -+ a1(x)y’ + ao(x)y = b(x)

Consider this non-homogeneous differential equation, where we assume the
coefficients are nice like before.
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Non-homogeneous differential equations

an(x)y™ + -+ + a1 (x)y’ + ao(x)y = b(x)

Consider this non-homogeneous differential equation, where we assume the
coefficients are nice like before.

If yp(x) is a particular solution to this equation and y.(x) is the
n-parameter family of solutions to the corresponding homogeneous
differential equation

an(x)y" + - + a1(x)y’ + ao(x)y = 0,

then y,(x) + yc(x) is an n-parameter family of solutions to this
non-homogeneous equation. Indeed, every solution takes this form.
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Non-homogeneous differential equations

an(x)y™ + - + a1 (x)y’ + ao(x)y = b(x)
Consider this non-homogeneous differential equation, where we assume the
coefficients are nice like before.

If yp(x) is a particular solution to this equation and y.(x) is the
n-parameter family of solutions to the corresponding homogeneous
differential equation

an(x)y" + - + a1(x)y’ + ao(x)y = 0,

then y,(x) + yc(x) is an n-parameter family of solutions to this
non-homogeneous equation. Indeed, every solution takes this form.

Let's see why this is.
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Families of solutions for non-homogeneous ODEs

Let's see the second-order case.

Suppose that y, is a solution to
a2(x)y” + a1(x)y’ + ao(x)y = b(x)
and y. is a solution to

a2 (x)y” + a1(x)y’ + ao(x)y = 0.
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Families of solutions for non-homogeneous ODEs

Let's see the second-order case.

Suppose that y, is a solution to
a2(x)y" + a1(x)y’ + ao(x)y = b(x)
and y. is a solution to
ax(x)y” + a1(x)y’ + ao(x)y = 0.

Then, adding two equations together, we get

a2yy + aiyp, + aoyp + a2y, + ary. + aoye = b(x) + 0
a2(vy +y¢) + a1y, + ye) + ao(yp + ye) = b(x)
an Y” +a Y/ + aoY = b(X)7
where Y(x) = yp(x) + yc(x) is this n-parameter family of solutions.
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@ To find the general solution to the homogeneous equation

an(x)y\" + - + a1 (x)y’ + ao(x)y =0

we need to find n many linearly independent solutions.
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A summary

@ To find the general solution to the homogeneous equation
()Y 4 4 ar(x)y’ + ao(x)y = 0

we need to find n many linearly independent solutions.

@ To find the general solution to the non-homogeneous equation
an()y\ + -+ a1(x)y’ + ao(x)y = b()

we need to find the general solution to the corresponding
homogeneous equation, and find one particular solution to the
non-homogeneous equation.
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A summary

@ To find the general solution to the homogeneous equation
()Y 4 4 ar(x)y’ + ao(x)y = 0

we need to find n many linearly independent solutions.

@ To find the general solution to the non-homogeneous equation
an()y\ + -+ a1(x)y’ + ao(x)y = b()

we need to find the general solution to the corresponding
homogeneous equation, and find one particular solution to the
non-homogeneous equation.

So the main part of the work is in finding the individual solutions.
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In the general case, finding individual solutions to

is hard.

an(x)y™ + -+ a1 (x)y’ + ao(x)y = b(x)
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Finding individual solutions

In the general case, finding individual solutions to

an(x)y(" + -+ + a1(x)y’ + a0(x)y = b(x)
is hard.

Our focus will be on the special case where the coefficients are constants,
namely the case

any!" + - + a1y’ + agy = b(x).

Here we do have a tractable problem, and we will learn general methods.
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Finding individual solutions

In the general case, finding individual solutions to

an(x)y(" + -+ + a1(x)y’ + a0(x)y = b(x)
is hard.

Our focus will be on the special case where the coefficients are constants,
namely the case

any!" + - + a1y’ + agy = b(x).

Here we do have a tractable problem, and we will learn general methods.
We start with homogeneous equations.
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Consider the equation

y" =3y’ +2y =0.
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An example

Consider the equation
y" =3y’ +2y =0.
What this says is that if we take a certain weighted sum of y with its first

and second derivatives, then they cancel and give 0. In particular, y, y’,
and y” are linearly dependent.
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An example

Consider the equation
y" =3y’ +2y =0.
What this says is that if we take a certain weighted sum of y with its first

and second derivatives, then they cancel and give 0. In particular, y, y’,
and y” are linearly dependent.

Any ideas of functions which are linearly dependent with their derivatives?
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y'+5y +6y =0
out to 0.

Again, we need a certain weighted sum of y and its derivatives to cancel
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ay" + by +cy=0
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ay’ + by’ +cy=0
Consider a possible solution of the form y = e™.

«O» «F>» «E» « E>» Q>



ay’ + by’ +cy=0
Consider a possible solution of the form y = ™. Then,

y = e
y/ — re™

y// — rzerx
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ay’ + by’ +cy=0
Consider a possible solution of the form y = ™. Then,

y:erx

!/

y = re™

y// — rzerx

Plug it into the equation and combine like terms to get:

(ar® 4 br + cr)e™ = 0.
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A more general example

ay” + by +cy=0
Consider a possible solution of the form y = e™. Then,

rx

y=e¢€
I _ re’™
y// — r2erx

Plug it into the equation and combine like terms to get:
(ar? + br + cr)e™ = 0.

This equation is true if and only if ar?> + br +c = 0. That is, the coefficient
r in the exponent needs to be a root of the polynomial av? + bv + ¢ = 0.
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y'+y=0
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y'+y=0
Let’s solve this by finding the roots
of v +1=0.
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y'+y=0
Let’s solve this by finding the roots
of v +1=0.

Alternatively, rearrange to y” = —y

And now recall some Calc | facts:
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y'+y=0
Let’s solve this by finding the roots
of v +1=0.

Alternatively, rearrange to y” = —y

And now recall some Calc | facts:

What's going on?77?
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We saw that y” + y = 0 has the following four solutions

y = eix
y = e—ix
y =sinx

Yy = cosx

But it should only have two linearly independent solutions
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Complex functions

We saw that y” + y = 0 has the following four solutions:

y = eix

y = e—ix
y =sinx
Yy = COs X

But it should only have two linearly independent solutions.

This is why we want to know the complex connection between circular trig
functions and the exponential function:

e = cosx + isinx

eix _ efix

sinx = s
2i

eix + e—ix

COSX = ———
2
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y'+2y' +y=0
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y'+2y' +y=0
We want to find the roots of the polynomial v? 4+ 2v 4+ 1 = 0.
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y'+2y' +y=0
We want to find the roots of the polynomial v? 4+ 2v 4+ 1 = 0.
This has only one root: v = —1. So that only gives one solution:
y = e *. What do?777?
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y'+2y' +y=0
We want to find the roots of the polynomial v? 4+ 2v 4+ 1 = 0.

This has only one root: v = —1. So that only gives one solution:
y = e *. What do?77?

It turns out that the other solution is y = xe™*.

«O» «F>» «E» « E>» Q>



To sum up

To solve the equation
any™ 4+ -+ a1y +ay =0
we want to find all roots of the characteristic polynomial
apv" + -+ a1v + ap.

If ris a root, then y = €™ is a solution.
If all roots are real and distinct, then we are done! We have n many
linearly independent solutions, from which we get the general solution!
But there may be a complication.
© If there are complex roots, we may want to write their solutions with
sin and cos instead of the the complex exponential.
© There may be repeated roots.
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To sum up

To solve the equation
any™ 4+ -+ a1y +ay =0
we want to find all roots of the characteristic polynomial
apv" + -+ a1v + ap.

If ris a root, then y = €™ is a solution.
If all roots are real and distinct, then we are done! We have n many
linearly independent solutions, from which we get the general solution!
But there may be a complication.

© If there are complex roots, we may want to write their solutions with

sin and cos instead of the the complex exponential.

© There may be repeated roots.

Let's talk about how to handle these!
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Complex roots

any™ 4+ -+ a1y’ + apy =0
apv"+ -+ av+ag

o If a+ bi is a complex root of a polynomial with real coefficients, then
so is a — bi.

o Written in exponential form, this gives y = e(@+b)x and y = el
as two solutions.

e We can rewrite these as y = e?(cos(bx) + isin(bx)) and
y = €7(cos(bx) — isin(bx).

@ Both of these are linear combinations of the solutions y = e? cos(bx)
and y = e?sin(bx).

@ So we could instead take these to be the two solutions.

@ This is especially nice if we only care about real inputs/outputs, not
what's happening on the whole complex plane.
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any™ + -+ ay 4+ apy =0

apv"+ -+ a1v+ag

@ Suppose this polynomial has a root r with multiplicity m.
y=e",

@ Then you get m many solutions from this root:
y = xe™|

y=x

m—1erx
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Repeated roots

any(”)+...+aly/+aoy:0
apv"+ - +av+ag

@ Suppose this polynomial has a root r with multiplicity m.
@ Then you get m many solutions from this root:

y=e% y=xe™ ... y=x""lte™

@ It could be that r = a+ bi is complex, in which case you have to
combine the work for both complications. You would also have a — bi
as a root with multiplicity m, giving 2m many solutions:

y = e™cos(bx) y=xe™cos(bx) ... y=x""1e™ cos(bx)
y =e™sin(bx) y=xe™sin(bx) ... y=x""1e™sin(bx)
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