
Math 302: Linear higher-order ODES

Kameryn J Williams

University of Hawai‘i at Mānoa

Spring 2021
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Higher-order linear differential equations

A higher-order differential equation is linear if it can be put into the
following form:

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = b(x).

If we want to solve equations like this one, the first question to ask is
whether it’s even the case that they must be solvable.
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Existence and uniqueness of solutions

Theorem

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = b(x)

Consider this differential equation, where the coefficient functions ai (x)
and b(x) are all continuous on a common interval and the leading
coefficient function an(x) is not identically 0.

Then, this equation has a unique solution satisfying the initial conditions

y(x0) = v0, y ′(x1) = v1, · · · y (n−1)(x0) = vn−1,

where x0 is a point in the interval and v0, v1, . . . , vn−1 are constants.

For now, we will take this theorem as given. We will talk a bit about
its proof at the end of the semester.
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Homogeneous linear ODEs

To solve these, we will first focus on those where the function on the right
is 0, i.e. the equation is of the form

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = 0.

We call these homogeneous linear differential equations.
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Existence and uniqueness of solutions

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = 0

Consider this homogeneous differential equation, where the coefficient
functions ai (x) are all continuous on a common interval and the leading
coefficient function an(x) is not identically 0.

1 This equation has n many linearly independent solutions
y1(x), y2(x), . . . , yn(x).

2 The linear combination

yc(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x)

is an n-parameter family of solutions for the equation. Indeed, every
solution takes this form.
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Getting from individual solutions to a general solution

Let’s see why knowing n linearly independent solutions gives us an
n-parameter family of solutions. To make things readable, let’s look at the
second-order case.

a2(x)y ′′ + a1(x)y ′ + a0(x) = 0

has solutions y1(x) and y2(x).

By definition of what it means to be a solution,
a2y
′′
1 + a1y

′
1 + a0y1 = 0 and a2y

′′
2 + a1y

′
2 + a0y2 = 0.

Let c1 and c2 be constants, then add these equations together:

c1(a2y
′′
1 + a1y

′
1 + a0y1) + c2(a2y

′′
2 + a1y

′
2 + a0y2) = 0

a2(c1y
′′
1 + c2y

′′
2 ) + a1(c1y

′
1 + c2y

′′
2 ) + a0(c1y1 + c2y2) = 0

a2y
′′
c + a1y

′
c + a0yc = 0

So yc = c1y1 + c2y2 is a solution.
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Non-homogeneous differential equations

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = b(x)

Consider this non-homogeneous differential equation, where we assume the
coefficients are nice like before.

If yp(x) is a particular solution to this equation and yc(x) is the
n-parameter family of solutions to the corresponding homogeneous
differential equation

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = 0,

then yp(x) + yc(x) is an n-parameter family of solutions to this
non-homogeneous equation. Indeed, every solution takes this form.

Let’s see why this is.
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Families of solutions for non-homogeneous ODEs

Let’s see the second-order case.

Suppose that yp is a solution to

a2(x)y ′′ + a1(x)y ′ + a0(x)y = b(x)

and yc is a solution to

a2(x)y ′′ + a1(x)y ′ + a0(x)y = 0.

Then, adding two equations together, we get

a2y
′′
p + a1y

′
p + a0yp + a2y

′′
c + a1y

′
c + a0yc = b(x) + 0

a2(y ′′p + y ′′c ) + a1(y ′p + y ′c) + a0(yp + yc) = b(x)

a2Y
′′ + a1Y

′ + a0Y = b(x),

where Y (x) = yp(x) + yc(x) is this n-parameter family of solutions.
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A summary

To find the general solution to the homogeneous equation

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = 0

we need to find n many linearly independent solutions.

To find the general solution to the non-homogeneous equation

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = b(x)

we need to find the general solution to the corresponding
homogeneous equation, and find one particular solution to the
non-homogeneous equation.

So the main part of the work is in finding the individual solutions.
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Finding individual solutions

In the general case, finding individual solutions to

an(x)y (n) + · · · + a1(x)y ′ + a0(x)y = b(x)

is hard.

Our focus will be on the special case where the coefficients are constants,
namely the case

any
(n) + · · · + a1y

′ + a0y = b(x).

Here we do have a tractable problem, and we will learn general methods.

We start with homogeneous equations.
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An example

Consider the equation
y ′′ − 3y ′ + 2y = 0.

What this says is that if we take a certain weighted sum of y with its first
and second derivatives, then they cancel and give 0. In particular, y , y ′,
and y ′′ are linearly dependent.
Any ideas of functions which are linearly dependent with their derivatives?
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Another example

y ′′ + 5y ′ + 6y = 0

Again, we need a certain weighted sum of y and its derivatives to cancel
out to 0.
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A more general example

ay ′′ + by ′ + cy = 0

Consider a possible solution of the form y = erx . Then,

y = erx

y ′ = rerx

y ′′ = r2erx

Plug it into the equation and combine like terms to get:

(ar2 + br + cr)erx = 0.

This equation is true if and only if ar2 +br + c = 0. That is, the coefficient
r in the exponent needs to be a root of the polynomial av2 + bv + c = 0.
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Another example

y ′′ + y = 0

Let’s solve this by finding the roots
of v2 + 1 = 0.

Alternatively, rearrange to y ′′ = −y .
And now recall some Calc I facts:

What’s going on???
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Complex functions

We saw that y ′′ + y = 0 has the following four solutions:

y = e ix

y = e−ix

y = sin x

y = cos x

But it should only have two linearly independent solutions.

This is why we want to know the complex connection between circular trig
functions and the exponential function:

e ix = cos x + i sin x

sin x =
e ix − e−ix

2i

cos x =
e ix + e−ix

2
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Another example

y ′′ + 2y ′ + y = 0

We want to find the roots of the polynomial v2 + 2v + 1 = 0.
This has only one root: v = −1. So that only gives one solution:
y = e−x . What do????

It turns out that the other solution is y = xe−x .
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To sum up

To solve the equation

any
(n) + · · · + a1y

′ + a0y = 0

we want to find all roots of the characteristic polynomial

anv
n + · · · + a1v + a0.

If r is a root, then y = erx is a solution.

If all roots are real and distinct, then we are done! We have n many
linearly independent solutions, from which we get the general solution!

But there may be a complication.

1 If there are complex roots, we may want to write their solutions with
sin and cos instead of the the complex exponential.

2 There may be repeated roots.

Let’s talk about how to handle these!
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Complex roots

any
(n) + · · · + a1y

′ + a0y = 0

anv
n + · · · + a1v + a0

If a + bi is a complex root of a polynomial with real coefficients, then
so is a− bi .

Written in exponential form, this gives y = e(a+bi)x and y = e(a−bi)x

as two solutions.

We can rewrite these as y = ea(cos(bx) + i sin(bx)) and
y = ea(cos(bx) − i sin(bx).

Both of these are linear combinations of the solutions y = ea cos(bx)
and y = ea sin(bx).

So we could instead take these to be the two solutions.

This is especially nice if we only care about real inputs/outputs, not
what’s happening on the whole complex plane.

K Williams (U. Hawai‘i @ Mānoa) Math 302: Linear ODEs Spring 2021 18 / 19



Repeated roots

any
(n) + · · · + a1y

′ + a0y = 0

anv
n + · · · + a1v + a0

Suppose this polynomial has a root r with multiplicity m.

Then you get m many solutions from this root:

y = erx , y = xerx , . . . y = xm−1erx

It could be that r = a + bi is complex, in which case you have to
combine the work for both complications. You would also have a− bi
as a root with multiplicity m, giving 2m many solutions:

y = eax cos(bx) y = xeax cos(bx) . . . y = xm−1eax cos(bx)

y = eax sin(bx) y = xeax sin(bx) . . . y = xm−1eax sin(bx)
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