Math 302: The Legendre Differential Equation

Kameryn J Williams

University of Hawai'i at Mānoa

Spring 2021

K Williams (U. Hawai'i @ Mānoa)

Math 302: The Legendre Differential Equation

Spring 2021 1 / 10

Sac

Differential equations in physics

- Many higher order differential equations which get applied are linear equations with constant coefficients.
- For example, harmonic motion is described by the differential equation

$$x'' + 2rx' + \omega^2 x = F(t)$$

Differential equations in physics

- Many higher order differential equations which get applied are linear equations with constant coefficients.
- For example, harmonic motion is described by the differential equation

$$x'' + 2rx' + \omega^2 x = F(t)$$

- But not all.
- Let's talk about the Legendre equation

$$(1-x^2)y''-2xy'+k(k+1)y=0$$
 $(k\in\mathbb{R})$

which has many applications in physics and engineering.

$$y'' - \frac{2xy'}{1-x^2} + \frac{k(k+1)y}{1-x^2} = 0$$

The only known portrait of Legendre

K Williams (U. Hawai'i @ Mānoa)

(ロト 《聞 》 《臣 》 《臣 》 [· O Q () ·

Spring 2021 3 / 10

$$y'' - \frac{2xy'}{1 - x^2} + \frac{k(k+1)y}{1 - x^2} = 0$$

This equation has singular points at $x = \pm 1$ (because $1 - x^2 = 0$ when $x = \pm 1$).

The only known portrait of Legendre

K Williams (U. Hawai'i @ Mānoa)

Spring 2021 3 / 10

The only known portrait of Legendre

$$y'' - \frac{2xy'}{1 - x^2} + \frac{k(k+1)y}{1 - x^2} = 0$$

This equation has singular points at $x = \pm 1$ (because $1 - x^2 = 0$ when $x = \pm 1$). We can use the Taylor series for $\frac{1}{1-x^2}$ to get Taylor series for the coefficient functions, both with radius of convergence = 1:

$$-\frac{2x}{1-x^2} = -2x(1+x^2+x^4+\cdots)$$
$$\frac{k(k+1)}{1-x^2} = k(k+1)(1+x^2+x^4+\cdots)$$

Spring 2021 3 / 10

The only known portrait of Legendre

$$y'' - \frac{2xy'}{1 - x^2} + \frac{k(k+1)y}{1 - x^2} = 0$$

This equation has singular points at $x = \pm 1$ (because $1 - x^2 = 0$ when $x = \pm 1$). We can use the Taylor series for $\frac{1}{1-x^2}$ to get Taylor series for the coefficient functions, both with radius of convergence = 1:

$$-\frac{2x}{1-x^2} = -2x(1+x^2+x^4+\cdots)$$
$$\frac{k(k+1)}{1-x^2} = k(k+1)(1+x^2+x^4+\cdots)$$

So let's try to find a solution centered at 0, valid for the interval (-1, 1).

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

Guess the solution is given by a power series:

$$y = \sum_{n=0}^{\infty} a_n x^n$$
$$y' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$
$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$$

Sac

Image: A math a math

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

Guess the solution is given by a power series:

$$y = \sum_{n=0}^{\infty} a_n x^n$$
$$y' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$
$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$$

Let's plug these in.

K Williams (U. Hawai'i @ Mānoa)

Image: A math a math

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

Guess the solution is given by a power series:

$$y = \sum_{n=0}^{\infty} a_n x^n$$
$$y' = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$
$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$$

Let's plug these in.

$$k(k+1)y = \sum_{n=0}^{\infty} k(k+1)a_n x^n$$

$$-2xy' = \sum_{n=0}^{\infty} -2na_n x^n$$

$$y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n$$

$$-x^2 y'' = \sum_{n=0}^{\infty} -n(n-1)a_n x^n$$

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

$$k(k+1)y = \sum_{n=0}^{\infty} k(k+1)a_n x^n$$

-2xy' = $\sum_{n=0}^{\infty} -2na_n x^n$
 $y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$
 $-x^2y'' = \sum_{n=0}^{\infty} -n(n-1)a_n x^n$

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

$$k(k+1)y = \sum_{n=0}^{\infty} k(k+1)a_n x^n$$

-2xy' = $\sum_{n=0}^{\infty} -2na_n x^n$
 $y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n$
 $-x^2y'' = \sum_{n=0}^{\infty} -n(n-1)a_n x^n$

Put these together, to get the coefficients are: • (constant) $2a_2 + k(k+1)a_0 = 0$ • (x term) $6a_3 + (-2 + k(k+1))a_1 = 0$ • $(x^n \text{ term})$

 $(n+1)(n+2)a_{n+2} + (-n(n+1) + k(k+1))a_n = 0$

・ロト ・ 同ト ・ 回ト ・ 回

3 Spring 2021 5 / 10

Sac

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

Recurrence relations for the terms:

$$2a_2 + k(k+1)a_0 = 0$$

$$6a_3 + (-2 + k(k+1))a_1 = 0$$

$$(n+1)(n+2)a_{n+2} + (-n(n+1) + k(k+1))a_n = 0$$

Sac

メロト スポト メヨト メヨ

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

Recurrence relations for the terms:

$$2a_2 + k(k+1)a_0 = 0$$

$$6a_3 + (-2 + k(k+1))a_1 = 0$$

$$(n+1)(n+2)a_{n+2} + (-n(n+1) + k(k+1))a_n = 0$$

This is a start, but we can solve for even terms just in terms of a_0 and odd terms just in terms of a_1 .

$$a_{2} = -\frac{k(k+1)}{2}a_{0}$$

$$a_{4} = \frac{6-k(k+1)}{3\cdot 4}a_{2}$$

$$= -\frac{(k-2)(k+3)}{3\cdot 4}a_{2}$$

$$= \frac{k(k+1)(k-2)(k+3)}{4!}a_{0}$$

< 口 > < 同

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

Recurrence relations for the terms:

$$2a_2 + k(k+1)a_0 = 0$$

$$6a_3 + (-2 + k(k+1))a_1 = 0$$

$$(n+1)(n+2)a_{n+2} + (-n(n+1) + k(k+1))a_n = 0$$

This is a start, but we can solve for even terms just in terms of a_0 and odd terms just in terms of a_1 . In general:

$$a_{2} = -\frac{k(k+1)}{2}a_{0}$$

$$a_{4} = \frac{6-k(k+1)}{3\cdot 4}a_{2}$$

$$= -\frac{(k-2)(k+3)}{3\cdot 4}a_{2}$$

$$= \frac{k(k+1)(k-2)(k+3)}{4!}a_{0}$$

$$a_{2n} = (-1)^n \frac{k(k+1)(k-2)(k+3)(k-4)(k+5)\cdots(k+2n-1)}{(2n)!} a_0$$

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

A similar idea gives the odd-indexed coefficients, but I'll skip the details:

$$a_{2n} = \underbrace{(-1)^n \frac{k(k+1)(k-2)(k+3)(k-4)(k+5)\cdots(k+2n-1)}{(2n)!}}_{=E_{2n}} a_0$$

$$a_{2n+1} = \underbrace{(-1)^n \frac{(k-1)(k+2)(k-3)(k+4)(k-5)(k+6)\cdots(k+2n)}{(2n+1)!}}_{=O_{2n+1}} a_1$$

K Williams (U. Hawai'i @ Mānoa)

Spring 2021 7 / 10

Sac

メロト メポト メヨト メヨ

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

A similar idea gives the odd-indexed coefficients, but I'll skip the details:

$$a_{2n} = \underbrace{(-1)^n \frac{k(k+1)(k-2)(k+3)(k-4)(k+5)\cdots(k+2n-1)}{(2n)!}}_{=E_{2n}} a_0$$

$$a_{2n+1} = \underbrace{(-1)^n \frac{(k-1)(k+2)(k-3)(k+4)(k-5)(k+6)\cdots(k+2n)}{(2n+1)!}}_{=O_{2n+1}} a_1$$

So the general solution, valid in the interval (-1,1), is:

$$y = a_0 \mathcal{E}(x) + a_1 \mathcal{O}(x) = a_0 \sum_{n \text{ even}} E_n x^n + a_1 \sum_{n \text{ odd}} O_n x^n$$

K Williams (U. Hawai'i @ Mānoa)

Math 302: The Legendre Differential Equation

Spring 2021 7 / 10

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

The coefficients:

$$E_{2n} = (-1)^n \, rac{k(k+1)\cdots(k+2n-1)}{(2n)!} \ O_{2n+1} = (-1)^n \, rac{(k-1)(k+2)\cdots(k+2n)}{(2n+1)!}$$

Sac

イロト イポト イヨト イヨト

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

The coefficients:

$$E_{2n} = (-1)^n \frac{k(k+1)\cdots(k+2n-1)}{(2n)!}$$
$$O_{2n+1} = (-1)^n \frac{(k-1)(k+2)\cdots(k+2n)}{(2n+1)!}$$

If k is a nonnegative even number or negative odd number, then $E_{2n} = 0$ for large enough n. So the even solution $\mathcal{E}(x)$ only has finitely many terms. I.e. it is a *polynomial*.

< □ > < 同

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

The coefficients:

$$E_{2n} = (-1)^n \frac{k(k+1)\cdots(k+2n-1)}{(2n)!}$$
$$O_{2n+1} = (-1)^n \frac{(k-1)(k+2)\cdots(k+2n)}{(2n+1)!}$$

If k is a nonnegative even number or negative odd number, then $E_{2n} = 0$ for large enough n. So the even solution $\mathcal{E}(x)$ only has finitely many terms. I.e. it is a *polynomial*. Similarly, if k is a positive odd number or negative even number, then $O_{2n+1} = 0$ for large enough n. So the odd solution $\mathcal{O}(x)$ is a polynomial.

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

The coefficients:

$$E_{2n} = (-1)^n \frac{k(k+1)\cdots(k+2n-1)}{(2n)!}$$
$$D_{2n+1} = (-1)^n \frac{(k-1)(k+2)\cdots(k+2n)}{(2n+1)!}$$

If k is a nonnegative even number or negative odd number, then $E_{2n} = 0$ for large enough n. So the even solution $\mathcal{E}(x)$ only has finitely many terms. I.e. it is a *polynomial*. Similarly, if k is a positive odd number or negative even number, then $O_{2n+1} = 0$ for large enough n. So the odd solution $\mathcal{O}(x)$ is a polynomial.

If k is not an integer, both solutions are given by power series with infinitely many terms.

Legendre polynomials

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

For integers $k \ge 0$ we call the polynomial solutions $a_0 \mathcal{E}(x)$ or $a_1 \mathcal{O}(x)$ to the Legendre equation the Legendre polynomials.

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

Legendre polynomials

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

For integers $k \ge 0$ we call the polynomial solutions $a_0 \mathcal{E}(x)$ or $a_1 \mathcal{O}(x)$ to the Legendre equation the Legendre polynomials.

Detail: we need to pick a value for the constant a_0 or a_1 . We pick it to be

$$\frac{(2k)!}{2^k(k!)^2}.$$

Legendre polynomials

$$(1-x^2)y''-2xy'+k(k+1)y=0$$

For integers $k \ge 0$ we call the polynomial solutions $a_0 \mathcal{E}(x)$ or $a_1 \mathcal{O}(x)$ to the Legendre equation the Legendre polynomials.

Detail: we need to pick a value for the constant a_0 or a_1 . We pick it to be

$$\frac{(2k)!}{2^k(k!)^2}.$$

Here's the first few Legendre polynomials.

$$p_0(x) = 1$$

$$p_1(x) = x$$

$$p_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$p_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$p_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

$$p_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$

p_k(x) has precisely *k* many roots in the interval [-1, 1].

Image: A math a math

- *p_k(x)* has precisely *k* many roots in the interval [-1, 1].
- *p_k*(1) = 1 and *p_k*(-1) = (-1)^k;
 p_k(0) = 0 for odd *k* and for even *k*

$$p_k(0) = (-1)^{k/2} \frac{1 \cdot 3 \cdots (k-1)}{2 \cdot 4 \cdots k}.$$

< □ > < 同

- $p_k(x)$ has precisely k many roots in the interval [-1, 1].
- *p_k*(1) = 1 and *p_k*(-1) = (-1)^k;
 p_k(0) = 0 for odd *k* and for even *k*

$$p_k(0) = (-1)^{k/2} \frac{1 \cdot 3 \cdots (k-1)}{2 \cdot 4 \cdots k}.$$

• (Rodrigues's formula)

$$p_k(x) = \frac{1}{n!2^n} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2 - 1)^n$$

- *p_k(x)* has precisely *k* many roots in the interval [-1, 1].
- p_k(1) = 1 and p_k(-1) = (-1)^k;
 p_k(0) = 0 for odd k and for even k

$$p_k(0) = (-1)^{k/2} \frac{1 \cdot 3 \cdots (k-1)}{2 \cdot 4 \cdots k}.$$

• (Rodrigues's formula)

$$p_k(x) = \frac{1}{n!2^n} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2 - 1)^n$$

 The Legendre polynomials are orthogonal on the interval [-1, 1]. That is, if k ≠ ℓ then

$$\int_{-1}^1 p_k(x)p_\ell(x)\,\mathrm{d}x=0.$$

- *p_k(x)* has precisely *k* many roots in the interval [-1, 1].
- p_k(1) = 1 and p_k(-1) = (-1)^k;
 p_k(0) = 0 for odd k and for even k

$$p_k(0) = (-1)^{k/2} \frac{1 \cdot 3 \cdots (k-1)}{2 \cdot 4 \cdots k}.$$

 The Legendre polynomials are orthogonal on the interval [-1, 1]. That is, if k ≠ ℓ then

$$\int_{-1}^1 p_k(x)p_\ell(x)\,\mathrm{d}x=0.$$

If you've taken linear algebra, compare to vectors in \mathbb{R}^n being orthogonal. The above integral is the dot product for this vector space.

• (Rodrigues's formula)

$$p_k(x) = \frac{1}{n!2^n} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2 - 1)^n$$

Spring 2021 10 / 10

- *p_k(x)* has precisely *k* many roots in the interval [-1, 1].
- *p_k*(1) = 1 and *p_k*(-1) = (-1)^k;
 p_k(0) = 0 for odd *k* and for even *k*

$$p_k(0) = (-1)^{k/2} \frac{1 \cdot 3 \cdots (k-1)}{2 \cdot 4 \cdots k}.$$

• (Rodrigues's formula)

$$p_k(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$$

 The Legendre polynomials are orthogonal on the interval [-1, 1]. That is, if k ≠ ℓ then

$$\int_{-1}^1 p_k(x)p_\ell(x)\,\mathrm{d}x=0.$$

If you've taken linear algebra, compare to vectors in \mathbb{R}^n being orthogonal. The above integral is the dot product for this vector space.

• Thus, the Legendre polynomials form an orthogonal basis for the polynomial functions on [-1, 1].

- *p_k(x)* has precisely *k* many roots in the interval [-1, 1].
- *p_k*(1) = 1 and *p_k*(-1) = (-1)^k;
 p_k(0) = 0 for odd *k* and for even *k*

$$p_k(0) = (-1)^{k/2} \frac{1 \cdot 3 \cdots (k-1)}{2 \cdot 4 \cdots k}.$$

• (Rodrigues's formula)

$$p_k(x) = \frac{1}{n!2^n} \frac{\mathsf{d}^n}{\mathsf{d}x^n} (x^2 - 1)^n$$

 The Legendre polynomials are orthogonal on the interval [-1, 1]. That is, if k ≠ ℓ then

$$\int_{-1}^1 p_k(x)p_\ell(x)\,\mathrm{d} x=0.$$

If you've taken linear algebra, compare to vectors in \mathbb{R}^n being orthogonal. The above integral is the dot product for this vector space.

- Thus, the Legendre polynomials form an orthogonal basis for the polynomial functions on [-1, 1].
- More, any differentible function on [-1, 1] can be approximated with weighted sums of Legendre polynomials.

イロト イポト イヨト イヨ

Spring 2021 10 / 10