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Differential equations in physics

Many higher order differential equations which get applied are linear
equations with constant coefficients.

For example, harmonic motion is described by the differential equation

x ′′ + 2rx ′ + ω2x = F (t)

But not all.

Let’s talk about the Legendre equation

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0 (k ∈ R)

which has many applications in physics and engineering.
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A first look at the Legendre equation

The only known portrait of Legendre

y ′′ − 2xy ′

1− x2
+

k(k + 1)y

1− x2
= 0

This equation has singular points at x = ±1
(because 1− x2 = 0 when x = ±1). We can
use the Taylor series for 1

1−x2 to get Taylor
series for the coefficient functions, both with
radius of convergence = 1:

− 2x

1− x2
= −2x(1 + x2 + x4 + · · · )

k(k + 1)

1− x2
= k(k + 1)(1 + x2 + x4 + · · · )

So let’s try to find a solution centered at 0,
valid for the interval (−1, 1).
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Solving Legendre

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0

Guess the solution is given by a power series:

y =
∞∑
n=0

anx
n

y ′ =
∞∑
n=0

(n + 1)an+1x
n

y ′′ =
∞∑
n=0

(n + 2)(n + 1)an+2x
n

Let’s plug these in.

k(k + 1)y =
∞∑
n=0

k(k + 1)anx
n

−2xy ′ =
∞∑
n=0

−2nanx
n

y ′′ =
∞∑
n=0

(n + 2)(n + 1)an+2x
n

−x2y ′′ =
∞∑
n=0

−n(n − 1)anx
n
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(constant)
2a2 + k(k + 1)a0 = 0

(x term)
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Solving Legendre

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0

Recurrence relations for the terms:

2a2 + k(k + 1)a0 = 0

6a3 + (−2 + k(k + 1))a1 = 0

(n + 1)(n + 2)an+2 + (−n(n + 1) + k(k + 1))an = 0

This is a start, but we can solve for even terms just in
terms of a0 and odd terms just in terms of a1.

a2 = −k(k + 1)

2
a0

a4 =
6− k(k + 1)

3 · 4
a2

= −(k − 2)(k + 3)

3 · 4
a2

=
k(k + 1)(k − 2)(k + 3)

4!
a0

In general:

a2n = (−1)n
k(k + 1)(k − 2)(k + 3)(k − 4)(k + 5) · · · (k + 2n − 1)

(2n)!
a0
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Solving Legendre

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0

A similar idea gives the odd-indexed coefficients, but I’ll skip the details:

a2n = (−1)n
k(k + 1)(k − 2)(k + 3)(k − 4)(k + 5) · · · (k + 2n − 1)

(2n)!︸ ︷︷ ︸
=E2n

a0

a2n+1 = (−1)n
(k − 1)(k + 2)(k − 3)(k + 4)(k − 5)(k + 6) · · · (k + 2n)

(2n + 1)!︸ ︷︷ ︸
=O2n+1

a1

So the general solution, valid in the interval (−1, 1), is:

y = a0E(x) + a1O(x) = a0

∑
n even

Enx
n + a1

∑
n odd

Onx
n
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The role of k

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0

The coefficients:

E2n = (−1)n
k(k + 1) · · · (k + 2n − 1)

(2n)!

O2n+1 = (−1)n
(k − 1)(k + 2) · · · (k + 2n)

(2n + 1)!

If k is a nonnegative even number or negative
odd number, then E2n = 0 for large enough n.
So the even solution E(x) only has finitely
many terms. I.e. it is a polynomial.

Similarly, if k is a positive odd number or
negative even number, then O2n+1 = 0 for
large enough n. So the odd solution O(x) is a
polynomial.

If k is not an integer, both solutions are given
by power series with infinitely many terms.
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Legendre polynomials

(1− x2)y ′′ − 2xy ′ + k(k + 1)y = 0

For integers k ≥ 0 we call the polynomial solutions
a0E(x) or a1O(x) to the Legendre equation the
Legendre polynomials.

Detail: we need to pick a value for the constant a0 or
a1. We pick it to be

(2k)!

2k(k!)2
.

Here’s the first few Legendre polynomials.

p0(x) = 1

p1(x) = x

p2(x) =
1

2
(3x2 − 1)

p3(x) =
1

2
(5x3 − 3x)

p4(x) =
1

8
(35x4 − 30x2 + 3)

p5(x) =
1

8
(63x5 − 70x3 + 15x)
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Properties of the Legendre polynomials

pk(x) has precisely k many roots
in the interval [−1, 1].

pk(1) = 1 and pk(−1) = (−1)k ;
pk(0) = 0 for odd k and for even
k

pk(0) = (−1)k/2 1 · 3 · · · (k − 1)

2 · 4 · · · k
.

(Rodrigues’s formula)

pk(x) =
1

n!2n
dn

dxn
(x2 − 1)n

The Legendre polynomials are orthogonal on the
interval [−1, 1]. That is, if k 6= ` then∫ 1

−1
pk(x)p`(x) dx = 0.

If you’ve taken linear algebra, compare to vectors in
Rn being orthogonal. The above integral is the dot
product for this vector space.

Thus, the Legendre polynomials form an orthogonal
basis for the polynomial functions on [−1, 1].

More, any differentible function on [−1, 1] can be
approximated with weighted sums of Legendre
polynomials.
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If you’ve taken linear algebra, compare to vectors in
Rn being orthogonal. The above integral is the dot
product for this vector space.

Thus, the Legendre polynomials form an orthogonal
basis for the polynomial functions on [−1, 1].

More, any differentible function on [−1, 1] can be
approximated with weighted sums of Legendre
polynomials.
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