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A broad picture

A template used to solve problems in
mathematics:

Transfer your problem to a new problem
in a new domain.

Solve this problem in the new domain.

Transfer the solution back to the original
domain.

Examples:

Integration by substitution.

Solving homogeneous linear ODEs.

Our next topic is the Laplace transform, used
to solve differential equations by transfering
from a time domain to a frequency domain.

K Williams (U. Hawai‘i @ Mānoa) Math 302: The Laplace Transform, I Spring 2021 2 / 9



A broad picture

A template used to solve problems in
mathematics:

Transfer your problem to a new problem
in a new domain.

Solve this problem in the new domain.

Transfer the solution back to the original
domain.

Examples:

Integration by substitution.

Solving homogeneous linear ODEs.

Our next topic is the Laplace transform, used
to solve differential equations by transfering
from a time domain to a frequency domain.
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Improper integrals

The Laplace transform is defined in terms of
improper integrals, so let’s briefly review them.

Intuitively,

∫ ∞
0

f (t) dt is the area of the

region bounded by the two axes and the
graph of f (t).

(It’s a little more complicated to handle
positive area above the axis versus
negative area below the axis, but that’s
the gist.)

Formally, this improper integral is defined
as a certain limit:∫ ∞

0
f (t) dt = lim

x→∞

∫ x

0
f (t) dt.
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A convergence theorem

Consider the improper integral∫ ∞
0

e−st f (t) dt,

where f (t) is a function and s is a real
number.

If this integral converges for some value
s = s0, then it converges for all values
s > s0.

The idea: if s > s0, then e−st < e−s0t for all t.
So the area for s must be smaller than the area
for s0.
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The Laplace transform

Consider a function f (t) in the time domain t
defined on 0 ≤ t <∞.

The Laplace transform of f , written L[f ]
is a function in the frequency domain s
defined as

L[f ](s) =

∫ ∞
0

e−st f (t) dt.

In general, s can be a complex number.
But for the purposes of this class, we will
only need to consider the case where s is
real.

Examples:

L[1](s) =

∫ ∞
0

e−st dt =
1

s

L[t](s) =

∫ ∞
0

te−st dt =
1

s2

This is what we computed two slides ago.
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Where does this come from?

You can think of the Laplace transform as a continuous version of a power series.

Power Series:

f (n) is a function with inputs n ∈ N.

The corresponding power series is

∞∑
n=0

f (n)xn

where x is a real number variable.

The continuous version:

f (t) is a function with inputs t ≥ 0.

Instead of an infinite series we do an
improper integral.

∫ ∞
0

f (t)x t dt.

Let’s rewrite this in base e instead of base
x : ∫ ∞

0
f (t)(e log x)t dt.

Now substitute −s = log x :∫ ∞
0

f (t)e−st dt.
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Some properties of the Laplace transform

The Laplace transform is a linear operator.
That is,

L[af + bg ] = aL[f ] + bL[g ].

(It is assumed that all inputs s to the Laplace
transforms are large enough that everything is
defined.)

This is not difficult to check, and it comes from
the fact that integration is a linear operator.
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Some properties of the Laplace transform

The Laplace transform is one-to-one on
continuous functions. That is, if f and g are
continuous functions, then

f = g if and only if L[f ] = L[g ].

The forward implication—if f = g then
L[f ] = L[g ]—is just a property of equality.

The backward implication is more difficult, and
I won’t show you a proof. What you need to
check is, if f 6= g then the integrals for the
Laplace transforms turn out different.

Because the Laplace transform is one-to-one, it
has an inverse, which we call the inverse
Laplace transform. It too is a linear operator,
because the inverse of a linear operator is
linear.

There is a formula for the inverse Laplace
transform, but it’s based on complex
integration, so I won’t talk about it.
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Computing Laplace transforms by hand

In use, you don’t compute Laplace transforms
by going back to the definition. Instead, you
remember—or look up—the basic cases and
use properties of the Laplace transform for
more complicated inputs.

Compare to how you differentiate. You
don’t differentiate sin x by computing the
limit

lim
h→0

sin(x + h)− sin(x)

h

by hand. Instead, you just remember
d

dx sin x = cos x .

We’ll compute some examples by hand in
lecture, but for homework you are encouraged
to use a table of Laplace transforms, such as
can be found on page 306 of your textbook.
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