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Solutions to differential equations

All semester we’ve been learning methods to solve differential
equations.

We haven’t exhausted the topic. You could spend semesters learning
more and more methods to solve more and more kinds of differential
equations.

For the last topic this semester, let’s step away from calculations to
ask a theoretical question:

When, in generality, can we say that a differential equation has
solutions? When are solutions uniquely identified?

I won’t go into every gritty detail. Rather, the goal is to give you a view of
the broad ideas, and some techniques and tricks that are used to reason
abstractly about differential equations.

K Williams (U. Hawai‘i @ Mānoa) Math 302: Existence and uniqueness of solutions Spring 2021 2 / 17



Solutions to differential equations

All semester we’ve been learning methods to solve differential
equations.

We haven’t exhausted the topic. You could spend semesters learning
more and more methods to solve more and more kinds of differential
equations.

For the last topic this semester, let’s step away from calculations to
ask a theoretical question:

When, in generality, can we say that a differential equation has
solutions? When are solutions uniquely identified?

I won’t go into every gritty detail. Rather, the goal is to give you a view of
the broad ideas, and some techniques and tricks that are used to reason
abstractly about differential equations.
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Linear differential equations

y (n) + an−1(x)y (n−1) + · · ·+ a1(x)y ′ + a0(x)y = b(x)

A trick: Let’s transform this from a high-order
problem in one function y to a first-order
problem in many functions y1, . . . , yn:

y1 = y

y2 = y ′ = y ′1
...

yn = y (n−1) = y ′n−1

We can turn our original equation into a system
of equations about the derivatives of the yi .

y ′n = −an−1yn − · · · − a1y2 − a0y1 + b

y ′n−1 = yn
...

y ′1 = y2

So solving this system of equations gives us a
solution to our original equation.

We’ve turned our problem into a new problem.
That’s kinda like progress!
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Solving systems of equations

We turned our nth-order differential equation
about an unknown function y into a system of
equations. Namely, we have

n equations

about n unknown functions y1, . . . , yn

where the ith equation describes y ′i in
terms of y1, . . . , yn, and x .

Let’s look at this in a bit more generality.

y ′1 = F1(x , y1, . . . , yn)

...

y ′n = Fn(x , y1, . . . , yn)

Think back to the beginning of the semester
when we looked at slope fields.

We had an equation y ′ = F (x , y), which
we could think of as assigning a slope to
every point in the plane.

What we have here is a higher dimensional
version of this. Rather than one slope in
2-dimensional space, we look at n slopes
in (n + 1)-dimensional space.

If we want to think about how to solve this, it
makes sense to start with the simplest case,
where we have only one unknown function.
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Solving y ′ = F (x , y)

Suppose for now that F is continuous in a
rectangle R: a0 ≤ x ≤ a1 and
b0 ≤ y ≤ b1.

(We’ll see later that we actually have to
assume a little bit more about F .)

Fix a point (x0, y0) in this rectangle, and
suppose we have have the initial condition
y(x0) = y0.

A trick: Turn the differential equation into an
integral equation.

Integrate both sides, starting at x0, get:

y(x)− y(x0) =

∫ x

x0

F (t, y(t)) dt.

Why?

Derivatives are easier to compute than
integrals.

But for theoretical uses, integrals are
better behaved.

Since we want a theoretical result rather
than calculations, this makes things easier.

K Williams (U. Hawai‘i @ Mānoa) Math 302: Existence and uniqueness of solutions Spring 2021 5 / 17



Solving y ′ = F (x , y)

Suppose for now that F is continuous in a
rectangle R: a0 ≤ x ≤ a1 and
b0 ≤ y ≤ b1.

(We’ll see later that we actually have to
assume a little bit more about F .)

Fix a point (x0, y0) in this rectangle, and
suppose we have have the initial condition
y(x0) = y0.

A trick: Turn the differential equation into an
integral equation.

Integrate both sides, starting at x0, get:

y(x)− y(x0) =

∫ x

x0

F (t, y(t)) dt.

Why?

Derivatives are easier to compute than
integrals.

But for theoretical uses, integrals are
better behaved.

Since we want a theoretical result rather
than calculations, this makes things easier.
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An integral equation

y(x) = y0 +

∫ x

x0

F (t, y(t)) dt

A stupid idea: What if we guess that
y(x) = y0?

This obviously won’t work, because in general

y0 +

∫ x

x0

F (t, y0) dt

is some new function, not the constant
function y0.

But still! What if we took the output of this
process, and did it again? And then kept
repeating it, and hoped that the error got
smaller and smaller.

y0(x) = y0

y1(x) = y0 +

∫ x

x0

F (t, y0(t)) dt

...

yn+1(x) = y0 +

∫ x

x0

F (t, yn(t)) dt

...

Spoiler: This stupid idea will work out (with an
extra assumption on F ). The error gets smaller
and smaller, so these Picard approximations
converge to the true solution.
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K Williams (U. Hawai‘i @ Mānoa) Math 302: Existence and uniqueness of solutions Spring 2021 6 / 17



An integral equation

y(x) = y0 +

∫ x

x0

F (t, y(t)) dt

A stupid idea: What if we guess that
y(x) = y0?

This obviously won’t work, because in general

y0 +

∫ x

x0

F (t, y0) dt

is some new function, not the constant
function y0.

But still! What if we took the output of this
process, and did it again? And then kept
repeating it, and hoped that the error got
smaller and smaller.

y0(x) = y0

y1(x) = y0 +

∫ x

x0

F (t, y0(t)) dt

...

yn+1(x) = y0 +

∫ x

x0

F (t, yn(t)) dt

...

Spoiler: This stupid idea will work out (with an
extra assumption on F ). The error gets smaller
and smaller, so these Picard approximations
converge to the true solution.
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An example integral equation: F (x , y) = x + y and x0 = y0 = 0

y(x) = y0 +

∫ x

x0

F (t, y(t)) dt
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An example integral equation: F (x , y) = x + y and x0 = y0 = 0

y(x) =

∫ x

0
t + y(t) dt
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A recap

We want to prove that a linear differential equation

y (n) + · · ·+ a1(x)y ′ + a0(x)y = b(x)

has solutions.

We reduced this problem about up to nth derivatives of a single
function to a problem about 1st derivatives of n many functions.

We’re first trying to solve the 1 dimensional version of this problem,
before looking at the general case.

We turned the first-order differential equation y ′ = F (x , y) into an
integral equation.

We want to use Picard’s method to find a solution to this integral
equation.
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Picard’s method

y(x) = y0 +

∫ x

x0

F (t, y(t)) dt

We want to solve this equation. The idea is to
get the solution from a sequence of better and
better approximations:

y0(x) = y0

y1(x) = y0 +

∫ x

x0

F (t, y0(t)) dt

...

yn+1(x) = y0 +

∫ x

x0

F (t, yn(t)) dt

...

The solution y(x) will be the limit of this
sequence.

In fact, it doesn’t matter what we start
with as our first guess y0(x). It can be
any continuous function and we will still
converge to the correct solution in the
limit.

Explaining just why this works will take some
time.

Let’s start by talking about convergence of
sequences of functions.
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Convergence of sequences of functions

Convergence and limits are a subtle topic.
We’ll have to be a bit more careful then was
necessary for the calculus sequence.

A sequence of functions y0, y1, . . . on a
common domain D converge to a function
y if limn→∞ yn(x) = y(x) for every x in
D.

More precisely, for any point x in D and
any error ε > 0, if n > N for some large
enough N then |yn(x)− y(x)| < ε.

The functions y0, y1, . . . converge
uniformly if you can use the same error for
any choice of x .

That is, for any error ε > 0 if n > N for
some large enough N then
|yn(x)− y(x)| < ε for any choice of x .

Uniform convergence is better behaved than
mere convergence.

For example:

If the functions y0, y1, . . . are all
continuous on D and converge uniformly
to y , then y is continuous on D.

If they merely converge to y , then y need
not be continuous.

The functions 1, x2, x3, . . . are continuous
on [0, 1] and converge (nonuniformly) to
the discontinuous function which is 0
when x < 1 and 1 when x = 1.

A lot of things you might hope convergence is
enough for actually need uniform convergence.
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Uniform convergence and integration

Suppose the functions y0, y1, . . . converge
uniformly to y on a domain which includes the
interval [a, b].

Then, you can swap the order of
integration and taking a limit:

lim
n→∞

∫ b

a
yn(x) dx =

∫ b

a
lim
n→∞

yn(x)︸ ︷︷ ︸
=y(x)

dx .

We want to apply this to our sequence of
Picard approximations:

lim
n→∞

yn(x) = lim
n→∞

(
y0 +

∫ x

x0

F (t, yn−1(t)) dt

)
= y0 +

∫ x

x0

lim
n→∞

F (t, yn−1(t)) dt

To be able to bring the limit inside the integral
we need that the sequence

F (t, y0(t)),F (t, y1(t)), . . . ,F (t, yn(t)), . . .

converges uniformly in the interval [x0, x ].
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One way we might get convergence

Maybe we can show that the differences
yn+1 − yn get uniformly smaller, so that the
telescoping series

(y0 − y1) + (y1 − y2) + (y2 − y3) + · · ·

converges uniformly.

Let’s look at this and think aboout what we
might need.

|y1 − y0| =

∣∣∣∣∫ x

x0

F (t, y0) dt

∣∣∣∣ ≤ ∫ x

x0

|F (t, y0)| dt

Because F is a continuous function on a
bounded domain, |F (x , y)| has some maximum
value M.

|y1 − y0| ≤
∫ x

x0

M dt = M |x − x0|

Since we’re looking at a bounded domain for x ,
we have some upper bound D for |x − x0|, so
we can conclude

|y1(x)− y0(x)| ≤ MD

for all x in our domain.

That’s a start. We got the first step. But later
ones are gonna be harder...
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Why is it harder?

We want to compute a bound on |yn+1 − yn|.
Let’s start

|yn+1 − yn| =

∣∣∣∣∫ x

x0

F (t, yn+1(t))− F (t, yn(t)) dt

∣∣∣∣
≤
∫ x

x0

|F (t, yn+1(t))− F (t, yn(t))| dt

We know that 0 ≤ |F (x , y)| ≤ M on our
domain, so the distance between F (t, yn+1(t))
and F (t, yn(t)) is at most 2M. So we get:

|yn+1 − yn|
∫ x

x0

2M dt ≤ 2MD.

This gives us a bound on the telescoping series

(y0 − y1) + (y1 − y2) + (y2 − y3) + · · ·

Namely, its absolute value is bounded by:

MD + 2MD + 2MD + · · ·

So we’ve seen it is ≤ ∞. That’s not helpful.

We need to do better.

The trouble: If F changes values really quickly,
we can’t get a better bound on the distance
between F (x0, y0) and F (x1, y1) for two points.
So we need to assume more about F .
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This is a good place to step away from the weeds to handwave

A condition on F that makes this work is to
assume that

|F (t, ya)− F (t, yb)| ≤ L |ya − yb|

for some fixed bound L which works for all
points ya, yb. This condition says that F can
change, but it cannot change too quickly.

(This is known as a Lipschitz condition.)

With this extra assumption, we can compute a
better bound:

|yn+1 − yn| ≤ MLn
Dn+1

(n + 1)!

Putting these together we get a bound for the
telescoping series

(y0 − y1) + (y1 − y2) + (y2 − y3) + · · ·

Namely, its magnitude is bounded by:

y0 +
M

L

(
LD

1!
+

(LD)2

2!
+ · · ·

)
The series in the parentheses is the series for
eLD − 1, which we know converges to a finite
number.

So the sequence y0, y1, . . . of functions
converges uniformly, call the limit y .
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A reminder of our goal

We want to check that the limit y of the Picard approximations satisfies the integral
equation

y(x) = y0 +

∫ x

x0

F (t, y(t)) dt.

Knowing that yn → y uniformly, we can check:

lim
n→∞

yn(x) = lim
n→∞

(
y0 +

∫ x

x0

F (t, yn−1(t)) dt

)
= y0 +

∫ x

x0

lim
n→∞

F (t, yn−1(t)) dt

= y0 +

∫ x

x0

F (t, lim
n→∞

yn−1(t)) dt

Using the Lipschitz condition on F , we can say that this last step is valid, we can
uniformly bring the limit inside F .
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Summing things up

Theorem (Picard–Lindelöf theorem)

Consider the differential equation

y ′ = F (x , y),

where F satisfies a certain Lipschitz condition
on a rectangle R, and consider a point (x0, y0)
in R. Then there is a unique solution to this
equation, valid on the a subdomain of the
rectangle, satisfying the initial condition
y(x0) = y0, where (x0, y0) is a point in R.

(You need a little more work than what we
covered to check uniqueness.)

What about with n equations?

y ′1 = F1(x , y1, . . . , yn)

...

y ′n = Fn(x , y1, . . . , yn)

You can get a simultaneous solution to all n
equations by a similar process, except doing it
for all equations at once.

So we get solutions to linear differential
equations of order > 1.
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Coda: Another existence theorem

We had to introduce this weird Lipschitz
condition to make the calculations work out.
Was this necessary?

Theorem (Peano existence theorem)

Consider the differential equation y ′ = F (x , y)
where F is continuous on a rectangle R, and
consider a point (x0, y0) in R. Then there is a
solution—not necessarily unique—to this
equation, valid on a subdomain of the
rectangle, satisfying y(x0) = y0.

That is, you can drop the assumption, but it
comes at the cost of uniqueness.

For example, the equation

y ′ =
√
|y |

has multiple different solutions satisfying
y(0) = 0:

y1 = 0

y2 =
x2

4
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