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Higher-order linear differential equations

Before the midterm, we were learning about first-order differential
equations.

Now we want to turn to higher-order differential equations, those involving
second derivatives or higher.

As you might expect, higher-order differential equations are generally
more difficult to analyze than first-order differential equations.

We will focus on the linear higher-order differential equations, namely
those of the form

an(x)y (n) + · · ·+ a1(x)y ′ + a0(x)y = b(x).
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A detour

To analyze higher-order linear differential equations, we will need to make
use of some mathematical tools.

Some facts about complex numbers; and

Some facts from linear algebra.

Depending on what math classes you’ve taken, you may have seen some of
this already. But since it’s not a required pre-requisite to take this class, I
want to take some lecture time to go over this material.
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Real and complex numbers

One reason the real numbers are useful because they allow us to do
calculus.

You get R from Q by “filling in the gaps”, and this is what makes the
machinery of limits, derivatives, and so on work.

Many important theorems of calculus, such as the intermediate value
theorem, aren’t true if you restrict to Q, and need these gaps filled in
to be true.
(For example, if you look only at rational numbers, the function
f (x) = x2 − 2 crosses from negative to positive without hitting 0.)

But sometimes the real numbers aren’t enough, and we want to extend to
the complex numbers.

Complex numbers (C) are those of the form a + bi where a, b ∈ R
and i is a new number which is defined by the relation i2 = −1.

The idea: negative numbers don’t have square roots in R, so we
expand R by adding square roots for negative numbers.
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The fundamental theorem of algebra

Some polynomials, such as x2 + 1, don’t have roots in R. But they do
have complex roots.

Theorem (The fundamental theorem of algebra)

Any non-constant polynomial with complex coefficients has a root. That
is, if you consider the polynomial, with coefficients ai ∈ C and n > 0,

anz
n + · · · a1z + a0,

then there is a complex number z which makes the polynomial equal to 0.

Moreover, if the polynomial has degree n, then there are n many roots,
counting multiplicity.

We won’t prove this theorem, but you can prove it using complex
analysis—calculus with complex numbers and functions instead of real
numbers and functions.
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K Williams (U. Hawai‘i @ Mānoa) Math 302: Complex numbers Spring 2021 5 / 17



The complex plane

Geometrically, you should think of the complex numbers as a plane:

The vertical axis is the imaginary part;

The horizontal axis is the real part.

You can also describe complex numbers using polar coordinates:

The absolute value or modulus of z = a + bi is |z | =
√
a2 + b2.

The argument of z = a + bi is arg z = arctan(b/a).

For reasons that will explained in a few slides, to write complex numbers in
polar coordinates we write

z = re iθ,

where r = |z | and θ = arg z .
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Algebra with complex numbers

You can add subtract and multiply complex numbers written in
rectangular form by using the rules for algebra with binomials, and
remembering that i2 = −1:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)− (c + di) = (a− c) + (b − d)i

(a + bi) · (c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc)i

Division is a little trickier, and needs a new idea. The problem is, how do
we get rid of the i in the denominator?
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Algebra with complex numbers

The conjugate of z = a + bi is z̄ = a− bi .

Note that z · z̄ = (a + bi)(a− bi) = a2 + b2 = |z |2 is always real.

This lets us get rid of the i in the denominator:

a + bi

c + di
=

a + bi

c + di
·c − di

c − di
=

(a + bi)(c − di)

c2 + d2
=

(ac + bd) + (bc − ad)i

c2 + d2

Actually doing this by hand is a bit tedious, and on the rare event that you
have to compute with complex numbers for this class, I encourage you to
use a calculator or computer.

A big interest here is theoretical: we’ve seen that C has all the same
algebraic operations as R. (But we don’t have an order < that’s
compatible with those algebraic operations.) So the same sorts of things
you can do with real numbers you can also do with complex numbers.
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K Williams (U. Hawai‘i @ Mānoa) Math 302: Complex numbers Spring 2021 8 / 17



Algebra with complex numbers

Polar form is not convenient for adding/substracting complex numbers.

But it does make multiplication/division straightforward, using rules for
exponents:

re iθ · se iϕ = rse i(θ+ϕ)

re iθ

se iϕ
=

r

s
e i(θ−ϕ)
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The complex exponential function

We can use the Taylor series for ex to define ez for a complex input z :

ez =
∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+

z3

3!
+

z4

4!
+

z5

5!
+ · · ·

You can show that this series converges for any complex number z , so it
defines a function on the entire complex plane. This is done by exactly the
same work as in the real case—you show that the radius of convergence is
∞, so it always converges.
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The complex exponential function

What does it look like if we input a purely imaginary number?

e ix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+ · · ·

= 1 + ix − x2

2!
− i · x

3

3!
+

x4

4!
+ i · x

5

5!
− x6

6!
± · · ·

=

(
1− x2

2!
+

x4

4!
− x6

6!
± · · ·

)
+

i

(
x − x3

3!
+

x5

5!
− x7

7!
± · · ·

)
= cos x + i sin x
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The complex exponential function

Using this equation and rules for exponents, we can rewrite ea+bi :

ea+bi = ea · ebi = ea(cos b + i sin b).

So the real part of z determines the modulus of ez , and the imaginary part
of z determines the modulus of ez .

This also justifies the polar form notation for complex numbers:

re iθ = e(cos θ + i sin θ)
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Complex trigonometric functions

Just like we defined ez using the Taylor series for the exponential function,
we can do the same for sin z and cos z :

sin z = z − z3

3!
+

z5

5!
− z7

7!
± · · ·

cos z = 1− z2

2!
+

z4

4!
− z6

6!
± · · ·

You can use these definitions to check how to write sin z and cos z in
terms of the exponential function:

sin z =
e iz − e−iz

2i
=

1

i
sinh(iz)

cos z =
e iz + e−iz

2
= cosh(iz)
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Complex numbers

There’s a lot more that can be said about complex numbers—let me shill
here for Math 444: Complex Analysis—but this is what we’ll need for this
class.

To summarize:

You can extend R to C by adding square roots for negative numbers,
getting a 2d plane of complex numbers.

C has the same algebraic operations as R. (In math jargon, they are
both fields.)

You can extend the exponential and trig functions to C, and doing so
reveals that they are tightly connected.

An important equation: ea+bi = ea(cos b + i sin b).
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Some linear algebra

Besides complex numbers, we will also need some linear algebra.

A fundamental concept in linear algebra is a vector space.

A vector space over R (over C) consists of vectors which can be
added and multiplied by scalars from R (from C).

Examples:

Rn is a vector space over R: vector addition and scalar multiplication
are coordinate-wise.

C is a vector space over R: it is isomorphic (= the same) to R2.
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Vector spaces of functions

For our purposes, the vector spaces of interest will consist of real-valued
(or complex-valued) functions.

Polynomials form a vector space. For example:

(x3 + 2x2 + x + 3) + (3x2 − 2x − 2) = x3 + 5x2 − x + 1

3(x2 + 2x + 1) = 3x2 + 6x + 3

The collection of it all functions f : R→ R form a vector space:
f + g is their sum as functions, and c · f is scalar multiplication with
functions.

Restricting to just continuous functions f : R→ R, or just
differentiable f : R→ R, or just infinitely differentiable f : R→ R, or
just integrable f : R→ R, or . . ., all form vector spaces.
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Linear independence

A linear combination of vectors is a sum of scalar multiples of those
vectors. A linear combination is nontrivial if at least one scalar
multiple is nonzero.

A collection of vectors is linearly independent if you cannot write a
vector in the collection as a nontrivial linear combinations of the
others.

It’s often more useful to think in terms of linear dependence. If you
have vectors v1, v2, . . . , vk , they are linearly dependent if and only if
there are scalars c1, c2, . . . , ck , at least one nonzero, so that

c1v1 + c2v2 + · · ·+ ckvk = 0
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