Math 302: The catenary

Kameryn J Williams

University of Hawai'i at Mānoa

Spring 2021

K Williams (U. Hawai'i @ Mānoa)

Spring 2021 1 / 13

Sac

メロト メポト メヨト メヨ

The catenary

Robert Hooke, English scientist and architect.

Hold a flexible chain, rope, cable, or similar at two points of equal height, and let it hang freely.

This curve is called the catenary (from the Latin word *catena*, meaning chain).

Can we describe this curve?

One application of this is in architecture:

- The catenary is the curve which makes it so that tension is entirely in the direction tangent to the curve.
- This makes it well-suited as a shape for arches: the arch supports its own weight well because the force is tangent to the curve of the arch.

Rainbow Bridge in Utah, a naturally-occuring arch which takes the shape of an inverted catenary.

The assumptions

- A chain is hung from two points of equal height.
- The chain is at rest, and the only forces on the chain are tension and gravity.
- The chain is thin, so it is accurately modeled as a 1d curve.
- The chain is uniform in density, so the weight of a segment depends only on its length,
- The chain is flexible, so any tension exerted on it is tangent to the curve.

Given these assumptions, the question is then:

• Mathematically describe the curve.

The assumptions

- A chain is hung from two points of equal height.
- The chain is at rest, and the only forces on the chain are tension and gravity.
- The chain is thin, so it is accurately modeled as a 1d curve.
- The chain is uniform in density, so the weight of a segment depends only on its length,
- The chain is flexible, so any tension exerted on it is tangent to the curve.

Given these assumptions, the question is then:

- Mathematically describe the curve.
- Good: a parametric equation $\vec{r}(t) = \langle x(t), y(t) \rangle$.
- Better: y as a function of x.

The assumptions

- A chain is hung from two points of equal height.
- The chain is at rest, and the only forces on the chain are tension and gravity.
- The chain is thin, so it is accurately modeled as a 1d curve.
- The chain is uniform in density, so the weight of a segment depends only on its length,
- The chain is flexible, so any tension exerted on it is tangent to the curve.

Given these assumptions, the question is then:

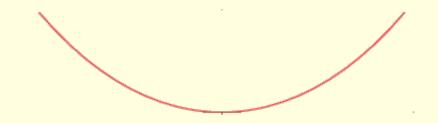
- Mathematically describe the curve.
- Good: a parametric equation $\vec{r}(t) = \langle x(t), y(t) \rangle$.
- Better: y as a function of x.

Of course, you can also ask what happens if you drop some of those assumptions. That complicates the analysis, and we will stick with this simplest setup.

Setting things up

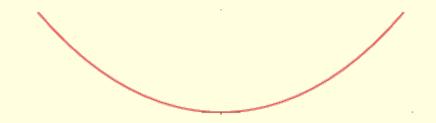


- Parameterize the curve by
 - $\vec{r}(s) = \langle x(s), y(s) \rangle$, where s is arc length.
- Pick the bottom of the curve to be the basepoint *s* = 0.
- Because we parameterized by arc length, $\frac{d\vec{r}}{ds}$ is always a unit vector.



- Parameterize the curve by $\vec{r}(s) = \langle x(s), y(s) \rangle$, where s is arc length.
- Pick the bottom of the curve to be the basepoint *s* = 0.
- Because we parameterized by arc length, $\frac{d\vec{r}}{ds}$ is always a unit vector.

 Pick a point r on the right of the curve, i.e. s > 0. (This is enough to consider, since the left case is symmetric.)



- Parameterize the curve by $\vec{r}(s) = \langle x(s), y(s) \rangle$, where s is arc length.
- Pick the bottom of the curve to be the basepoint *s* = 0.
- Because we parameterized by arc length, $\frac{d\vec{r}}{ds}$ is always a unit vector.

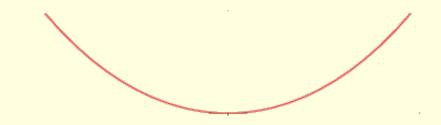
- Pick a point r on the right of the curve, i.e. s > 0. (This is enough to consider, since the left case is symmetric.)
- We want to analyze the forces acting on the segment of the chain from the basepoint to \vec{r} .

Three forces on the segment from the basepoint to \vec{r} :

- The tension \vec{T}_0 at the basepoint;
- The tension \vec{T} at \vec{r} ; and
- The weight \vec{W} .

These are in equilibrium, so the three vectors sum to the zero vector.

K Williams (U. Hawai'i @ Mānoa)



The *x*-coordinates sum to 0:

$$T_0 = T \cos \theta$$

The *y*-coordinates sum to 0:

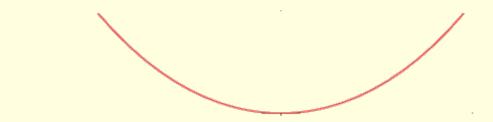
$$g\delta s = T\sin\theta$$

K Williams (U. Hawai'i @ Mānoa)

Spring 2021 7 / 13

Sac

< □ > < 同



The *x*-coordinates sum to 0:

$$T_0 = T \cos \theta$$

Take a ratio:

$$\frac{T\sin\theta}{T\cos\theta} = \tan\theta = \frac{\mathrm{d}y}{\mathrm{d}x} = g\delta s/T_0$$

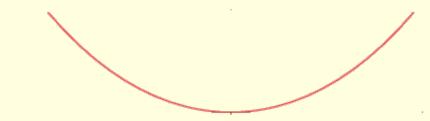
< □ > < 同

The *y*-coordinates sum to 0:

$$g\delta s = T\sin\theta$$

Spring 2021 7 / 13

Sac



The *x*-coordinates sum to 0:

$$T_0 = T \cos \theta$$

The *y*-coordinates sum to 0:

$$g\delta s = T\sin\theta$$

Take a ratio:

$$\frac{T\sin\theta}{T\cos\theta} = \tan\theta = \frac{\mathrm{d}y}{\mathrm{d}x} = g\delta s/T_0$$

Combine the constants into one: $a = T_0/(g\delta)$.

$$\frac{dy}{dx} = \frac{s}{a}$$

We arrived at a differential equation which describes the slope of the curve:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{s}{a},$$

where a is a constant and s is the arc length from the bottom of the curve.

We arrived at a differential equation which describes the slope of the curve:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{s}{a},$$

where a is a constant and s is the arc length from the bottom of the curve.

• Let's use one of the arc length formulae you learned in Calc II:

$$s = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x.$$

We arrived at a differential equation which describes the slope of the curve:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{s}{a},$$

where a is a constant and s is the arc length from the bottom of the curve.

• Let's use one of the arc length formulae you learned in Calc II:

$$s = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x.$$

By the fundamental theorem of calculus, we can describe how s changes as x increases:

$$\frac{\mathrm{d}s}{\mathrm{d}x} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}$$

We arrived at a differential equation which describes the slope of the curve:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{s}{a},$$

where a is a constant and s is the arc length from the bottom of the curve.

• Let's use one of the arc length formulae you learned in Calc II:

$$s = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x.$$

By the fundamental theorem of calculus, we can describe how s changes as x increases:

$$\frac{\mathrm{d}s}{\mathrm{d}x} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \frac{s^2}{a^2}} = \frac{\sqrt{a^2 + s^2}}{a}.$$

We arrived at a differential equation which describes the slope of the curve:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{s}{a},$$

where a is a constant and s is the arc length from the bottom of the curve.

• Let's use one of the arc length formulae you learned in Calc II:

$$s = \int \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \,\mathrm{d}x.$$

By the fundamental theorem of calculus, we can describe how s changes as x increases:

$$\frac{\mathrm{d}s}{\mathrm{d}x} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} = \sqrt{1 + \frac{s^2}{a^2}} = \frac{\sqrt{a^2 + s^2}}{a}.$$

Therefore:

and

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{a}{\sqrt{a^2 + s^2}}$$

$$\frac{\mathrm{d}y}{\mathrm{d}s} = \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}s} = \frac{s}{\sqrt{a^2 + s^2}}.$$

$$\frac{\mathrm{d}y}{\mathrm{d}s} = \frac{s}{\sqrt{a^2 + s^2}}$$

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{a}{\sqrt{a^2 + s^2}}$$

Spring 2021 9 / 13

Sac

・ロト ・ 同ト ・ 同ト ・ 同

K Williams (U. Hawai'i @ Mānoa)

Math 302: The catenary

$$\frac{\mathrm{d}y}{\mathrm{d}s} = \frac{s}{\sqrt{a^2 + s^2}}$$

$$y(s) = \sqrt{a^2 + s^2} + C$$

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{a}{\sqrt{a^2 + s^2}}$$

K Williams (U. Hawai'i @ Mānoa)

Spring 2021 9 / 13

Sac

Э

$$\frac{\mathrm{d}y}{\mathrm{d}s} = \frac{s}{\sqrt{a^2 + s^2}}$$

$$y(s) = \sqrt{a^2 + s^2} + C$$

Translating vertically, we may take the constant C to be 0.

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{a}{\sqrt{a^2 + s^2}}$$

< 口 > < 同

nac

$$\frac{\mathrm{d}y}{\mathrm{d}s} = \frac{s}{\sqrt{a^2 + s^2}}$$

This can be solved by integrating the righthand side, doing integration by substitution:

$$y(s) = \sqrt{a^2 + s^2} + C$$

Translating vertically, we may take the constant C to be 0.

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{a}{\sqrt{a^2 + s^2}}$$

This can also be solved by integrating. It's not so simple, so let's use a computer algebra system:

$$x(s) = a \log \left(\frac{s + \sqrt{a^2 + s^2}}{a} \right) + C$$

Again, we may translate to take the constant C to be 0.

$$\frac{\mathrm{d}y}{\mathrm{d}s} = \frac{s}{\sqrt{a^2 + s^2}}$$

This can be solved by integrating the righthand side, doing integration by substitution:

$$y(s) = \sqrt{a^2 + s^2} + C$$

Translating vertically, we may take the constant C to be 0.

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \frac{a}{\sqrt{a^2 + s^2}}$$

This can also be solved by integrating. It's not so simple, so let's use a computer algebra system:

$$x(s) = a \log \left(\frac{s + \sqrt{a^2 + s^2}}{a} \right) + C$$

Again, we may translate to take the constant C to be 0.

This looks pretty ugly. Let's take a detour to investigate this function more closely

We determined a parametric equation for the catenary:

$$x = a \log \left(\frac{s + \sqrt{a^2 + s^2}}{a}\right)$$
$$y = \sqrt{a^2 + s^2}$$

Sac

Image: A matched block of the second seco

We determined a parametric equation for the catenary:

$$x = a \log \left(\frac{s + \sqrt{a^2 + s^2}}{a}\right)$$
$$y = \sqrt{a^2 + s^2}$$

Let's define a new function (the name will be explained later):

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right).$$

Then $x = a \operatorname{arcsinh}(s/a)$, as a bit of algebra confirms.

We determined a parametric equation for the catenary:

$$x = a \log \left(\frac{s + \sqrt{a^2 + s^2}}{a}\right)$$
$$y = \sqrt{a^2 + s^2}$$

Let's define a new function (the name will be explained later):

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right).$$

Then $x = a \operatorname{arcsinh}(s/a)$, as a bit of algebra confirms.

Some observations:

- arcsinh is defined as a composition of strictly increasing functions:
 - The derivative of $u + \sqrt{1 + u^2}$ is $1 + \frac{u}{\sqrt{1 + u^2}}$, which is always strictly positive.
 - So $u + \sqrt{1 + u^2}$ is strictly increasing.
 - And log is strictly increasing.
- So arcsinh is strictly increasing.

We determined a parametric equation for the catenary:

$$x = a \log \left(\frac{s + \sqrt{a^2 + s^2}}{a}\right)$$
$$y = \sqrt{a^2 + s^2}$$

Let's define a new function (the name will be explained later):

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right)$$

Then $x = a \operatorname{arcsinh}(s/a)$, as a bit of algebra confirms.

Some observations:

- arcsinh is defined as a composition of strictly increasing functions:
 - The derivative of $u + \sqrt{1 + u^2}$ is $1 + \frac{u}{\sqrt{1 + u^2}}$, which is always strictly positive.
 - So $u + \sqrt{1 + u^2}$ is strictly increasing.
 - And log is strictly increasing.
- So arcsinh is strictly increasing.
- Because arcsinh is strictly increasing, it is one-to-one, and so it has an inverse.
- What does this inverse look like?

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right).$$

K Williams (U. Hawai'i @ Mānoa)

Spring 2021 11 / 13

Э

Sac

・ロト ・ 同ト ・ ヨト ・ ヨ

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right).$$

The inverse to this function is:

$$\sinh(u)=\frac{e^u-e^{-u}}{2}.$$

(Checking this is a tedious exercise in algebra, which I will skip because it's boring.)

< 口 > < 同

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right).$$

The inverse to this function is:

$$\sinh(u)=\frac{e^u-e^{-u}}{2}.$$

(Checking this is a tedious exercise in algebra, which I will skip because it's boring.)

The derivative of $\sinh(u)$ is:

$$\cosh(u)=\frac{\mathrm{e}^u+\mathrm{e}^{-u}}{2}.$$

Differentiating again brings you back to $\sinh(u)$.

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right)$$

The inverse to this function is:

$$\sinh(u)=\frac{e^u-e^{-u}}{2}.$$

(Checking this is a tedious exercise in algebra, which I will skip because it's boring.)

The derivative of $\sinh(u)$ is:

$$\cosh(u)=rac{\mathrm{e}^u+\mathrm{e}^{-u}}{2}.$$

Differentiating again brings you back to $\sinh(u)$.

sinh and cosh are known as the hyperbolic trigonometric functions.

$$\operatorname{arcsinh}(u) = \log\left(u + \sqrt{1 + u^2}\right).$$

The inverse to this function is:

$$\sinh(u)=\frac{e^u-e^{-u}}{2}.$$

(Checking this is a tedious exercise in algebra, which I will skip because it's boring.)

The derivative of sinh(u) is:

$$\cosh(u) = rac{e^u + e^{-u}}{2}.$$

Differentiating again brings you back to $\sinh(u)$.

sinh and cosh are known as the hyperbolic trigonometric functions.

To explain the name:

- The circular trig functions sin and cos satisfy the equation $\cos^2 u + \sin^2 u = 1$
- This should make you think of the equation $x^2 + y^2 = 1$ which describes the unit circle.
- The hyperbolic trig functions sinh and cosh satisfy the equation $\cosh^2 u - \sinh^2 u = 1.$
- This should make you think of the equation $x^2 y^2 = 1$ which describes a hyperbola.

・ロト ・ 一下・ ・ 日下・ ・ 日

$$x = a \operatorname{arcsinh}(s/a)$$
$$y = \sqrt{a^2 + s^2}$$

Sac

$$x = a \operatorname{arcsinh}(s/a)$$
$$y = \sqrt{a^2 + s^2}$$

Using this we can describe the arc length s in terms of x:

$$s = a \sinh(x/a)$$

$$x = a \operatorname{arcsinh}(s/a)$$
$$y = \sqrt{a^2 + s^2}$$

Using this we can describe the arc length s in terms of x:

$$s = a \sinh(x/a)$$

And this can in turn be used to describe y in terms of x.

From the identity $\cosh^2 u - \sinh^2 u = 1$ we get that $\cosh^2 u = 1 + \sinh^2 u$.

$$x = a \operatorname{arcsinh}(s/a)$$
$$y = \sqrt{a^2 + s^2}$$

Using this we can describe the arc length s in terms of x:

$$s = a \sinh(x/a)$$

And this can in turn be used to describe y in terms of x.

From the identity $\cosh^2 u - \sinh^2 u = 1$ we get that $\cosh^2 u = 1 + \sinh^2 u$. Therefore:

$$y = \sqrt{a^2 + s^2}$$

= $\sqrt{a^2 + a^2 \sinh^2(x/a)}$
= $\sqrt{a^2 \cosh^2(x/a)}$
= $a \cosh(x/a)$

$$x = a \operatorname{arcsinh}(s/a)$$
$$y = \sqrt{a^2 + s^2}$$

Using this we can describe the arc length s in terms of x:

$$s = a \sinh(x/a)$$

And this can in turn be used to describe y in terms of x.

From the identity $\cosh^2 u - \sinh^2 u = 1$ we get that $\cosh^2 u = 1 + \sinh^2 u$. Therefore:

$$y = \sqrt{a^2 + s^2}$$

= $\sqrt{a^2 + a^2 \sinh^2(x/a)}$
= $\sqrt{a^2 \cosh^2(x/a)}$
= $a \cosh(x/a)$

So we've found a way to describe the catenary where y is a function of x.

Conclusion

The curve can be described parametrically: $\vec{r}(s) = \langle x(s), y(s) \rangle$, where

We can also describe it by expressing y as a function of x:

$$x(s) = a \operatorname{arcsinh}(s/a)$$

$$y(s) = \sqrt{a^2 + s^2}$$

$$y = a \cosh(x/a) = a \cdot \frac{e^{x/a} + e^{-x/a}}{2}$$

The constant $a = T_0/(g\delta)$ is based only upon the acceleration g due to gravity, the density δ of the chain, and the tension T_0 at the bottom point of the chain.