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The catenary

Robert Hooke, English scientist and architect.

Hold a flexible chain, rope, cable, or similar at
two points of equal height, and let it hang
freely.

This curve is called the catenary (from the
Latin word catēna, meaning chain).

Can we describe this curve?
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Catenary arches

One application of this is in architecture:

The catenary is the curve which makes it
so that tension is entirely in the direction
tangent to the curve.

This makes it well-suited as a shape for
arches: the arch supports its own weight
well because the force is tangent to the
curve of the arch.

Rainbow Bridge in Utah, a naturally-occuring
arch which takes the shape of an inverted

catenary.
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The assumptions

A chain is hung from two points of equal
height.

The chain is at rest, and the only forces
on the chain are tension and gravity.

The chain is thin, so it is accurately
modeled as a 1d curve.

The chain is uniform in density, so the
weight of a segment depends only on its
length,

The chain is flexible, so any tension
exerted on it is tangent to the curve.

Given these assumptions, the question is then:

Mathematically describe the curve.

Good: a parametric equation
~r (t) = 〈x(t), y(t)〉.
Better: y as a function of x .

Of course, you can also ask what happens if
you drop some of those assumptions. That
complicates the analysis, and we will stick with
this simplest setup.
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Setting things up

Parameterize the curve by
~r (s) = 〈x(s), y(s)〉, where s is arc length.

Pick the bottom of the curve to be the
basepoint s = 0.

Because we parameterized by arc length,
d~r
ds is always a unit vector.

Pick a point ~r on the right of the curve,
i.e. s > 0. (This is enough to consider,
since the left case is symmetric.)

We want to analyze the forces acting on
the segment of the chain from the
basepoint to ~r .
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Analyzing the forces

Three forces on the segment from the
basepoint to ~r :

The tension ~T0 at the basepoint;

The tension ~T at ~r ; and

The weight ~W .

These are in equilibrium, so the three vectors
sum to the zero vector.
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Analyzing the forces

The x-coordinates sum to 0:

T0 = T cos θ

The y -coordinates sum to 0:

gδs = T sin θ

Take a ratio:

T sin θ

T cos θ
= tan θ =

dy

dx
= gδs/T0

Combine the constants into one: a = T0/(gδ).

dy

dx
=

s

a
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A differential equation → better differential equations

We arrived at a differential equation which
describes the slope of the curve:

dy

dx
=

s

a
,

where a is a constant and s is the arc length
from the bottom of the curve.

Let’s use one of the arc length formulae
you learned in Calc II:

s =

∫ √
1 +

(
dy

dx

)2

dx .

By the fundamental theorem of calculus, we
can describe how s changes as x increases:

ds

dx
=

√
1 +

(
dy

dx

)2

=

√
1 +

s2

a2
=

√
a2 + s2

a
.

Therefore:
dx

ds
=

a√
a2 + s2

and
dy

ds
=

dy

dx
· dx

ds
=

s√
a2 + s2

.
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K Williams (U. Hawai‘i @ Mānoa) Math 302: The catenary Spring 2021 8 / 13



A differential equation → better differential equations

We arrived at a differential equation which
describes the slope of the curve:

dy

dx
=

s

a
,

where a is a constant and s is the arc length
from the bottom of the curve.

Let’s use one of the arc length formulae
you learned in Calc II:

s =

∫ √
1 +

(
dy

dx

)2

dx .

By the fundamental theorem of calculus, we
can describe how s changes as x increases:

ds

dx
=

√
1 +

(
dy

dx

)2

=

√
1 +

s2

a2
=

√
a2 + s2

a
.

Therefore:
dx

ds
=

a√
a2 + s2

and
dy

ds
=

dy

dx
· dx

ds
=

s√
a2 + s2

.
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Two differential equations to solve

dy

ds
=

s√
a2 + s2

This can be solved by integrating the
righthand side, doing integration by
substitution:

y(s) =
√
a2 + s2 + C

Translating vertically, we may take the
constant C to be 0.

dx

ds
=

a√
a2 + s2

This can also be solved by integrating. It’s not
so simple, so let’s use a computer algebra
system:

x(s) = a log

(
s +
√
a2 + s2

a

)
+ C

Again, we may translate to take the constant
C to be 0.

This looks pretty ugly. Let’s take a detour to
investigate this function more closely
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The arcsinh function

We determined a parametric equation for the
catenary:

x = a log

(
s +
√
a2 + s2

a

)
y =

√
a2 + s2

Let’s define a new function (the name will be
explained later):

arcsinh(u) = log
(
u +

√
1 + u2

)
.

Then x = a arcsinh(s/a), as a bit of algebra
confirms.

Some observations:

arcsinh is defined as a composition of
strictly increasing functions:

The derivative of u +
√

1 + u2 is
1 + u√

1+u2
, which is always strictly

positive.
So u +

√
1 + u2 is strictly increasing.

And log is strictly increasing.

So arcsinh is strictly increasing.

Because arcsinh is strictly increasing, it is
one-to-one, and so it has an inverse.

What does this inverse look like?
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The sinh and cosh functions

arcsinh(u) = log
(
u +

√
1 + u2

)
.

The inverse to this function is:

sinh(u) =
eu − e−u

2
.

(Checking this is a tedious exercise in algebra,
which I will skip because it’s boring.)

The derivative of sinh(u) is:

cosh(u) =
eu + e−u

2
.

Differentiating again brings you back to
sinh(u).

sinh and cosh are known as the hyperbolic
trigonometric functions.

To explain the name:

The circular trig functions sin and cos
satisfy the equation cos2 u + sin2 u = 1

This should make you think of the
equation x2 + y2 = 1 which describes the
unit circle.

The hyperbolic trig functions sinh and
cosh satisfy the equation
cosh2 u − sinh2 u = 1.

This should make you think of the
equation x2 − y2 = 1 which describes a
hyperbola.
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K Williams (U. Hawai‘i @ Mānoa) Math 302: The catenary Spring 2021 11 / 13



Back to the catenary

We determined a parametric equation for the
catenary, parameterized by arc length s:

x = a arcsinh(s/a)

y =
√

a2 + s2

Using this we can describe the arc length s in
terms of x :

s = a sinh(x/a)

And this can in turn be used to describe y in
terms of x .

From the identity cosh2 u − sinh2 u = 1 we get
that cosh2 u = 1 + sinh2 u.

Therefore:

y =
√
a2 + s2

=

√
a2 + a2 sinh2(x/a)

=

√
a2 cosh2(x/a)

= a cosh(x/a)

So we’ve found a way to describe the catenary
where y is a function of x .
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So we’ve found a way to describe the catenary
where y is a function of x .

K Williams (U. Hawai‘i @ Mānoa) Math 302: The catenary Spring 2021 12 / 13



Back to the catenary
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Conclusion

The curve can be described parametrically:
~r (s) = 〈x(s), y(s)〉, where

x(s) = a arcsinh(s/a)

y(s) =
√

a2 + s2

We can also describe it by expressing y as a
function of x :

y = a cosh(x/a) = a · e
x/a + e−x/a

2

The constant a = T0/(gδ) is based only upon the acceleration g due to gravity, the density δ
of the chain, and the tension T0 at the bottom point of the chain.
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