MATH455: HOMEWORK 0

KAMERYN J WILLIAMS

Exercise 1. Show that there is no bijection between \mathbb{N} and \mathbb{R} .

Solution. It was proven in class on Monday, January 6 that \mathbb{R} is in bijective correspondence with $\mathcal{P}(\mathbb{N})$. Accordingly, it suffices to prove that there is no bijection between \mathbb{N} and $\mathcal{P}(\mathbb{N})$. To this end, consider an arbitrary function $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$. Define $D \subseteq \mathbb{N}$ as $D = \{n \in \mathbb{N} : n \notin f(n)\}$. I claim that D is not in the range of f. To see this, suppose it were the case that D = f(n) for some n. If $n \in D$, then by the definition of D we would have that $n \notin f(n) = D$, a contradiction. On the other hand, if $n \notin D = f(n)$, then again by by the definition of D we would have that $n \in D$. Either way, we get a contradiction. So it must be that our arbitrary f is not surjective, and hence fails to be bijective.

Date: January 10, 2019.