MATH455 HOMEWORK 6 DUE FRIDAY, MARCH 6

A general hint for this homework set: by the completeness + soundness theorems showing that Γ is consistent is equivalent to showing that Γ is satisfiable and $\Gamma \vdash \varphi$ is equivalent to $\Gamma \models \varphi$.

Exercise 1. Do exercise 2.5 from the textbook page 82. (Recall the book's notation: S is a set of symbols and T^S is the set of terms using the symbols from S.)

Exercise 2. Let Γ be an inconsistent set of \mathcal{L} -formulae. Define, as we did in class, a structure \mathcal{M} out of \mathcal{L} -terms:

- $t \sim t'$ if $\Gamma \vdash t = t'$ and [t] is the \sim -equivalence class for t.
- $M = \{[t] : t \text{ is an } \mathcal{L}\text{-term} \}.$

•
$$c^{\mathcal{M}} = [c].$$

- $f^{\mathcal{M}}([t_1], \dots, [t_k]) = [f(t_1, \dots, t_k)].$ $R^{\mathcal{M}}([t_1], \dots, [t_k])$ iff $\Gamma \vdash R(t_1, \dots, t_k).$

Show that \mathcal{M} is well-defined. Explicitly determine M. To what extent does this depend on the choice of inconsistent Γ .

Let Γ be a set of \mathcal{L} -formulae and $\Gamma^* \supseteq \Gamma$ be a set of \mathcal{L}^* -formulae, where $\mathcal{L}^* \supseteq \mathcal{L}$. Say that Γ^* is a conservative extension of Γ if given any \mathcal{L} -formula φ we have $\Gamma^* \vdash \varphi$ iff $\Gamma \vdash \varphi$. (That is, a conservative extension is one which doesn't prove any new formulae in the old language.)

Exercise 3. Fix a set I, a language \mathcal{L} , and a consistent set Γ of \mathcal{L} -formulae. Suppose that any structure which satisfies Γ is infinite. Extend \mathcal{L} to \mathcal{L}^* by adding constants c_i for each $i \in I$ and extend Γ to Γ^* by adding new axioms " $c_i \neq c_j$ " for $i \neq j \in I$. Show that Γ^* is a conservative extension of Γ .

Exercise 4. Suppose Γ is a consistent and complete set of \mathcal{L} -formulae. Extend \mathcal{L} to a new language \mathcal{L}^* by adding constants $c_{\exists x\varphi}$ for each \mathcal{L}^* -formula $\exists x\varphi$, where the constant $c_{\exists x\varphi}$ does not occur in φ .¹ Extend Γ to Γ^* by adding new axioms " $\exists x \varphi \Rightarrow \varphi \frac{c \exists x \varphi}{x}$ ". Show that Γ^* is a conservative extension of Γ .

¹As in class, this seemingly circular definition is actually an inductive definition.