MATH455 HOMEWORK 3 DUE FRIDAY, FEBRUARY 14

Exercise 1. Let \mathcal{M}, \mathcal{N} , and \mathcal{K} be structures in the same language. Show that if $M \prec K, N \prec K$, and $M \subseteq N$ then $M \prec N$.

Let $\mathcal{R} = (\mathbb{R}, 0, 1, +, \cdot, <)$ be the reals as an ordered field. Recall that a real r is *algebraic* if there is a polynomial p(x) with integer coefficients so that p(r) = 0.

Exercise 2. Show that every algebraic real is definable without parameters in \mathcal{R}^{1} .

Recall the definition of the functions on an ultraproduct $\mathcal{M} = \prod_{i \in I} \mathcal{M}_i / U$ using an ultrafilter U on I, where f is an arity k function symbol in the language of \mathcal{M} :

 $f^{\mathcal{M}}((x_i^1),\ldots,(x_i^k)) = (y_i) \quad \text{iff} \quad \left\{ i \in I : f^{\mathcal{M}_i}(x_i^1,\ldots,x_i^k) = y_i \right\} \in U.$

Exercise 3. Show that $f^{\mathcal{M}}$ is well-defined on the ultraproduct \mathcal{M} . That is, show that if $(x_i^{\ell}) =_U (\bar{x}_i^{\ell})$ for all $\ell \leq k$ then $f^{\mathcal{M}}((x_i^1), \ldots, (x_i^k)) =_U f^{\mathcal{M}}((\bar{x}_i^1), \ldots, (\bar{x}_i^k))$. [Hint: this is similar to what we did in class for showing that $=_U$ is an equivalence relation and that $R^{\mathcal{M}}$ is a congruence modulo $=_U$.]

Exercise 4. Let U_p be the principal ultrafilter on I generated by $p \in I$, that is $A \subseteq I$ is in U_p iff $p \in A$. Show that $\prod_{i \in I} \mathcal{M}_i/U_p \cong \mathcal{M}_p$. (In particular, this implies that $\mathrm{Ult}(\mathcal{M}, U_p) \cong \mathcal{M}$.)

¹In fact, the only definable elements in \mathcal{R} are the algebraic reals, and if $\mathcal{A} \subseteq \mathcal{R}$ is the restriction of \mathcal{R} to the algebraic reals then $\mathcal{A} \prec \mathcal{R}$. But this is much harder to prove.