MATH455 HOMEWORK 1 DUE FRIDAY, JANUARY 31

Recall the three axioms for equivalence relations, in the language \mathcal{L} with a binary relation symbol ≡.

 $\forall x \ x \equiv x$ (Refl)

 $\forall x \forall y \ x \equiv y \Rightarrow y \equiv x$ (Sym)

$$(\text{Trans}) \qquad \qquad \forall x \forall y \forall z \ (x \equiv y \land y \equiv z) \Rightarrow x \equiv z$$

Exercise 1. Consider the following step-by-step proof of Refl from Sym + Trans as axioms.

(1) Fix x.

(2) Fix y so that $x \equiv y$.

- (3) Then by Sym, $y \equiv x$.
- (4) So by Trans, $x \equiv x$.
- (5) Since x was arbitrary we have proved $\forall x \ x \equiv x$.

This proof has a gap. Identify in which step the gap appears. Formulate an extra axiom φ which fills the gap and write a proof of Refl from the axioms Sym + Trans + φ . Produce an \mathcal{L} -structure which satisfies Sym and Trans but not Refl.

Exercise 2. Do Exercise 4.9 from the textbook (page 38).

Exercise 3. Let φ and ψ be arbitrary formulae. Prove that the following pairs of formulae are logically equivalent.

- $\neg(\varphi \land \psi)$ and $\neg \varphi \lor \neg \psi$.
- $\neg(\varphi \lor \psi)$ and $\neg \varphi \land \neg \psi$.
- φ and $\neg \neg \varphi$.
- $\forall x \varphi$ and $\neg \exists x \neg \varphi$.
- $\exists x \varphi$ and $\neg \forall x \neg \varphi$.

Exercise 4. Use the previous exercise to show the following.

• Every formula is logically equivalent to a formula using only \land , \neg , and \forall (i.e. no \lor nor \exists).

• Every formula is logically equivalent to a formula using only \lor , \neg , and \exists (i.e. no \land nor \forall). [Hint: argue by induction on formulae.]

1