MATH455 HOMEWORK 0 DUE FRIDAY, JANUARY 24

Recall the truth tables for the following logical connectives.

Definition. A set S of logical connectives is universal if for any finite n and any function $f : \{t, f\}^n \to \{t, f\}$ there is an expression $E(p_1, \ldots, p_n)$ using the propositional variables p_1, \ldots, p_n and connectives from S so that $E(p_1, \ldots, p_n) = f(p_1, \ldots, p_n)$ for any assignment of truth values to the propositional variables.

Exercise 1. Show that $\{\land, \lor, \neg\}$ is universal.

Exercise 2. Which of $\{\wedge, \lor\}$, $\{\wedge, \neg\}$, and $\{\lor, \neg\}$ are universal? Justify your answers.

Exercise 3. Consider the following logical connective, defined according to the following truth table.

 $\begin{array}{c|ccc} p & q & p \uparrow q \\ \hline t & t & f \\ t & f & t \\ f & t & t \\ f & f & t \\ \end{array}$

Show that $\{\uparrow\}$ is universal. [Hint: by Exercise 1 it is enough to show that $p \land q, p \lor q$, and $\neg p$ can all be expressed just using \uparrow . (Why?)]

 $Exercise \ 4.$ Consider the following logical connective, defined according to the following truth table.

1

p	q	$p\downarrow q$
t	t	f
t	f	f
f	t	f
f	f	t
She	w t	hat $\{\downarrow\}$ is universal.