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Previously in Math 321

Last time we talked about equivalence relations.

These give an abstract notion of sameness.

Formally: an equivalence relation on a set X is a reflexive, symmetric,
transitive relation on X .

An alternate perspective: an equivalence relation partions X into
equivalence classes.

For today I want to talk about one important use of equivalence relations
in mathematics, namely to build new structures.
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An example: Modular arithmetic

Let’s consider n = 4 and the equivalence relation ≡ mod 4, which let’s
call ∼ for short.
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Another example: Building Q from Z

Define ∼ on Z× (Z \ {0}) as (a, b) ∼ (c , d) iff ad = bc.

K Williams (U. Hawai‘i @ Mānoa) Math 321: More Equivalence Relations Fall 2020 4 / 7



Yet another example: Building Z from Q

Define ∼ on N× N as (a, b) ∼ (c , d) iff a + d = b + c .
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A vague sketch of the general picture

Suppose you have a mathematical structure X and ∼ is an equivalence
relation which plays nicely with the structure of X . Then you can quotient
X to produce a new structure on X/ ∼, the collection of equivalence
classes on X .

This is a very vague sketch!
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A final—incomplete—example: building R from Q

Define ∼ on the set of infinite sequences of rational numbers as:

(pn) ∼ (qn) iff lim
n→∞

|pn − qn| = 0

We actually need to restrict this to the set of infinite sequences (pn) so
that

lim
n→∞

pn − pn+1 = 0
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