Math 321: Relations, part IV: More Equivalence Relations

Kameryn J Williams

University of Hawai'i at Mānoa

Fall 2020

Image: Image:

K Williams (U. Hawai'i @ Mānoa) Math 321: More Equivalence Relations

Fall 2020 1 / 7

Last time we talked about equivalence relations.

- These give an abstract notion of sameness.
- Formally: an equivalence relation on a set X is a reflexive, symmetric, transitive relation on X.
- An alternate perspective: an equivalence relation partions X into equivalence classes.

Last time we talked about equivalence relations.

- These give an abstract notion of sameness.
- Formally: an equivalence relation on a set X is a reflexive, symmetric, transitive relation on X.
- An alternate perspective: an equivalence relation partions X into equivalence classes.

For today I want to talk about one important use of equivalence relations in mathematics, namely to build new structures.

An example: Modular arithmetic

Let's consider n = 4 and the equivalence relation $\equiv \mod 4$, which let's call \sim for short.

(日) (同) (三) (三)

Another example: Building \mathbb{Q} from \mathbb{Z}

Define \sim on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as $(a, b) \sim (c, d)$ iff ad = bc.

K Williams (U. Hawai'i @ Mānoa) Math 321: More Equivalence Relations

Fall 2020 4 / 7

Yet another example: Building \mathbb{Z} from \mathbb{Q}

イロト イ団ト イヨト イヨト

590

Yet another example: Building \mathbb{Z} from \mathbb{Q}

Define \sim on $\mathbb{N} \times \mathbb{N}$ as $(a, b) \sim (c, d)$ iff a + d = b + c.

イロト イ団ト イヨト イヨト

DQC

A vague sketch of the general picture

Suppose you have a mathematical structure X and \sim is an equivalence relation which plays nicely with the structure of X. Then you can quotient X to produce a new structure on X/\sim , the collection of equivalence classes on X.

A vague sketch of the general picture

Suppose you have a mathematical structure X and \sim is an equivalence relation which plays nicely with the structure of X. Then you can quotient X to produce a new structure on X/\sim , the collection of equivalence classes on X.

This is a very vague sketch!

A final—incomplete—example: building \mathbb{R} from \mathbb{Q}

Define \sim on the set of infinite sequences of rational numbers as:

$$(p_n) \sim (q_n)$$
 iff $\lim_{n \to \infty} |p_n - q_n| = 0$

Image: A match a ma

A final—incomplete—example: building \mathbb{R} from \mathbb{Q}

Define \sim on the set of infinite sequences of rational numbers as:

$$(p_n)\sim (q_n)$$
 iff $\lim_{n\to\infty} |p_n-q_n|=0$

We actually need to restrict this to the set of infinite sequences (p_n) so that

$$\lim_{n\to\infty}p_n-p_{n+1}=0$$