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Last time

We talked about how to make relations—such as =, <, |, or so
on—mathematical objects. Specifically, in the most general form, a
(binary) relation from a set A to a set B is a subset of the Cartesian
product A× B. That is, a relation is a set of ordered pairs (a, b) with
a ∈ A and b ∈ B.

Today we’re going to focus on a particularly important kind of relation,
namely order relations.
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Intuitive picture

Intuitive, an order relation on a set A gives us a way to compare elements
of a in terms of size, position, complexity, or similar.

Some examples:

≤ on N compares numbers by size.

You can think of ≤ on R as ordering the real line by position.

You can think of ⊆ as comparing sets by size.

| on N measures how complex a natural number is by how many
primes you have to multiply together to get it.
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Order relations

Recall these properties we talked about last time, for a relation R on a set
A:

R is reflexive if a R a for all a ∈ A.

R is transitive if a R b and b R c implies a R c for all a, b, c ∈ A.

Let’s introduce a couple new properties:

R is antireflexive if a 6R a for all a ∈ A.

R is antisymmetric if a R b and a 6= b implies b 6R a for all a, b ∈ A.

If R is reflexive, you can equivalently state antisymmetry as: a R b and
b R a implies a = b for all a, b ∈ A.
If R is antireflexive, you can equivalently state antisymmetry as: a R b
implies b 6R a for all a, b ∈ A.

If R is reflexive, transitive, and antisymmetric we call R a (nonstrict) order
relation or (reflexive) order relation.

If R is antireflexive, transitive, and antisymmetric we call R a (strict) order
relation or (antireflexive) order relation.
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Examples

Let’s look at < on Z, | on N, and ⊆ on sets.
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Strict versus nonstrict orders

Theorem

There is a correspondence between strict and nonstrict orders.

If @ is a strict order on A then v = {(a, b) ∈ A : a @ b or a = b} is a
nonstrict order on A.

If v is a nonstrict order on A then @ = {(a, b) ∈ A : a v b and
a 6= b} is a strict order on A.

In a slogan: you can switch between a strict and a nonstrict order by
whether or not you allow equal elements in the order.

Proof.

Homework :)
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Strict versus nonstrict orders

Notation:

A line underneath, as in ⊆ or ≤ or v, denotes a nonstrict order.

A line underneath with a slash through it, as in ( or �, denotes a
strict order. You may also see $ or �.

Usually, no line underneath, as in <, denotes a strict order. But not
always!

Some authors—very rudely in my opinion–use ⊂ to mean ⊆. So to
avoid confusion it’s best to use ( for the strict order.

To denote the reverse of an order you flip the symbol horizontally: ≤
becomes ≥, ( becomes ), v becomes w, and so on.

Note that the reverse of an order will itself satisfy the properties of
being an order!

Warning! 6⊆ does not have the same meaning as (!
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K Williams (U. Hawai‘i @ Mānoa) Math 321: Relations, part II: Orders Fall 2020 7 / 15



Partial and total orders

In some orders, everything is comparable.

If x and y are real numbers, then x < y , x = y , or x > y .

In other orders, this is not the case.

A = {0} and B = {1} are sets, but A 6⊆ B and B 6⊆ A.

7 and 13 are natural numbers, but 7 - 13 and 13 - 7.

We want to be able to distinguish these circumstances.
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Partial and total orders

A set X equipped with an order ≤ on X is called a partially ordered set (or
poset). We also call ≤ a partial order.

If ≤ satisfies the additional property that x ≤ y or y ≤ x for all x , y ∈ X ,
then we call it totally ordered or linearly ordered.

Can also formulate for strict orders: A total strict order is a strict
partial order where x < y or x = y or x > y for all x , y ∈ X .

Warning! Partial order does not mean non-total order. Rather, a total
order is a special case of a partial order.
(Is this bad terminology? Probably.)
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Extreme elements

Suppose (X ,≤) is a poset.

m ∈ X is the smallest or least element if m ≤ x for all x ∈ X .

m ∈ X is a minimal element if there is no x ∈ X so that x < m.

M ∈ X is the largest element if M ≥ x for all x ∈ X .

M ∈ X is a maximal element if thre is no x ∈ X so that x > M.

Remark: If m is the smallest element in (X ,≤) then m is minimal, and if
M is the largest element then M is maximal. In both cases, it is the
unique minimal/maximal element.

Remark: A smallest element in (X ,≤) is a largest element in (X ,≥), and
vice versa. A similar fact holds for minimal/maximal elements.
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Extreme elements

Let’s look at < on N, ⊆ on P(N), and | on {n ∈ N : n ≥ 2}.
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Extreme elements

Proposition

Smallest elements, if they exist, are unique. The same is true for largest
elements.

Proof.

Suppose m and m′ both satisfy the definition of being the smallest
element of a partially ordered set (X ,≤). Then, by definition, m ≤ m′ and
m′ ≤ m. So by antisymmetry m = m′.
You could make a similar argument for largest elements, but I’d rather be
lazy. As remarked before, if (X ,≤) is a poset then so is (X ,≥). So if
(X ,≥) has a smallest element it must be unique, but being a smallest
element of (X ,≥) is the same as being a largest element of (X ,≤).
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Extreme elements

Proposition

In a total order, being a minimal element is equivalent to being a smallest
element, and being a maximal element is equivalent to being a largest
element.

For this reason, in total orders smallest elements are sometimes called
minimums and largest elements are called maximums.

Proof.

Like before we only have to check the minimal/smallest case.
(⇐) We said earlier that smallest elements are minimal.
(⇒) Suppose m is a minimal element of (X ,≤). Consider any x ∈ X . By
totalness, either m < x , m = x , or m > x . The last is impossible, because
m is minimal, so m ≤ x . So we have seen m is the smallest element of
X .
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Upper bounds and lower bounds, suprema and infima

Let (X ,≤) be a poset, and suppose A ⊆ X is nonempty.

u ∈ X is an upper bound for A if a ≤ u for all a ∈ A.

` ∈ X is a lower bound for A if a ≥ ` for all a ∈ A.

Let U be the set of upper bounds for A. The smallest element of U,
if it exists, is called the supremum or least upper bound for A.

Let L be the set of lower bounds for A. The largest element of L, if it
exists, is called the infimum or greatest lower bound for A.
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Examples

Let’s look at ≤ on Q and R and ⊆ on P(N).
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