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Mathematical objects

When we talk about mathematical objects, we don’t just want to talk
about them by themselves. There’s nothing interesting in asserting: “the
number 7”. Rather, we want to say stuff like “2 + 2 = 4” or “e < π”.
That is, we want to apply functions like + to our objects or we want to
say our objects satisfy a relation like <.

While something like “2 + 2 < 7 is a statement about mathematical
objects, we also want to be able to think about the relation < as a
mathematical object in its own right.

So let’s talk about how to do that.
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Cartesian products

Definition

An ordered pair is just as the name suggests: a pair of objects where you
know the order—which is first versus which is last. We write (a, b) for the
ordered pair whose first element is a and whose second element is b.

Definition

Given two sets A and B, their Cartesian product is the set

A× B = {(a, b) : a ∈ A, b ∈ B}.

For example, R2 = R× R = {(x , y) : x , y ∈ R} is the Cartesian plane.
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Properties of Cartesian products

1 If A has m elements and B has n elements then A× B has mn
elements.

2 In general, A× B 6= B × A.

3 A× (B ∪ C ) = (A× B) ∪ (A× C ).

4 A× (B ∩ C ) = (A× B) ∩ (A× C ).

5 A× ∅ = ∅ × A = ∅.
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Beyond two

You can also do Cartesian products with more than two coordinates, for
example R3 = R× R× R is three-dimensional Euclidean space. If you
have, say, four coordinates, then instead of ordered pairs (a, b) you need
ordered quadruples (a, b, c , d). But the idea is the same, and we will
mainly be concerned with the binary case.
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What are relations?

Example: Consider the relation < on R. We want to think of this relation
as an object.

The idea: what we need to know is when x < y is true.

So we can represent < as the set of all pairs (x , y) for which x < y .

That is, we represent < as a certain subset of the Cartesian product
R× R.

This perspective on relations is extensional—based only on what
elements make the relation true—rather than intensional—based just
on how it is defined.
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Relations in general

Definition

Let A and B be sets. Then a (binary) relation from A to B is a subset of
A× B.

Examples:

| = {(a, b) ∈ Z× Z : a divides b}.
< = {(x , y) ∈ R× R : x < y}.
Equivalence modulo n is the relation {(a, b) ∈ Z×Z : a ≡ b mod n}.

When talking about relations abstractly, we will need to give them a name.
We will usually use a letter, saving symbols like <, ⊆, ∈, |, etc. for
specific relations.
So a R b just means that (a, b) ∈ R for some relation R.
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Thinking pictorally about relations
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Properties of relations

Let R be a relation from A to B.

The domain of R is domR = {a ∈ A : ∃b ∈ B a R b}
The range of R is ranR = {b ∈ B : ∃a ∈ A a R b}.
The inverse of R is the relation R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}.
Let S be a relation from B to C . The composition of S and R is the
relation S ◦ R = {(a, c) ∈ A× C : ∃b ∈ B a R b S c}.

These should remind you of the definitions for functions. And indeed the
same facts for functions also hold true for relations, e.g.
R ◦ (S ◦ T ) = (R ◦ S) ◦ T .
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Examples

Let’s look at the relations <, |, and ≡ mod n on N.
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More properties of relations

Let R be a relation on A.

R is reflexive if a R a for all a ∈ A.

R is symmetric if a R b implies b R a for all a, b ∈ A.

R is transitive if (a R b and b R c) implies a R c for all a, b, c ∈ A.
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