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Fall 2020
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Last time

Last time we talked about proof strategies involving if-then
statements.

Now let’s talk about proof strategies involving negations (¬).
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How to prove a negative?

One sometimes hears the commonsensical claim that “You can’t
prove a negative”.

At least if one confines that to mathematics, that statement is wrong.

One of the main methods at our disposal is known as proof by
contradiction or reductio ad absurdum.
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Reductio ad absurdum

To prove ¬P: Assume P as a premise and derive a contradiction—a
statement that can never be true.

Often the contradiction is of the form Q ∧ ¬Q.

We can also represent this in terms of what our knowns and goals are:

knowns goals
... ¬P

gets trasformed into

knowns goals

P Q ∧ ¬Q
...

A tricky part: what Q do we want to use? This is often not obvious.
My suggestion: just start working, and see what pops up. You can
stumble upon a contradiction without knowing in advance what
specifically you are looking for.
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K Williams (U. Hawai‘i @ Mānoa) Math 321: more about proofs Fall 2020 4 / 9



A famous example

Theorem
√

2 is irrational.

Saying
√

2 is irrational is exactly saying that
√

2 is not rational, i.e.
that

√
2 cannot be written in the form p/q for integers p and q.

So to prove this by contradiction, we want to assume that
√

2 = p/q
for some integers p and q, and then derive a contradiction. How
might we do this?

We only have a limited amount of information, so let’s just try to use
it.

√
2 =

p

q
⇒ 2 =

p2

q2
⇒ p2 = 2q2.

So we have seen that p2 must be even, and so p must also be even,
because a ∈ Z is even iff a = 2k for some integer k .
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A famous example

Theorem
√

2 is irrational.

We assumed toward a contradiction that
√

2 = p/q, and have figured
out that p is even.

But then we can also conclude that q2 and q must be even: If p = 2k
then

2q2 = p2 = 4k2 ⇒ q2 = 2k2.

Why is this a problem? It means that p and q must have a common
factor, but we can always write a fraction in reduced form so the
denominator and numerator don’t have a common factor. This is our
desired contradiction.
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Let’s write this up now

Theorem
√

2 is irrational.

Proof.

Suppose toward a contradiction that
√

2 is rational.* Then we have that√
2 = p/q for some integers p and q with no common factors. Doing

some algebra then yields that p2 = 2q2 and so p2 is even. Then p is also
even. This means that p = 2k for some integer k and so substituting
p = 2k into the earlier equation gives q2 = 2k2. Thus, q2 and hence also
q are even. But then 2 is a common factor of p and q, contradicting that
they have no common factor.

* Phrases like “Suppose toward a contradiction that P” signify to the
reader that we are going to prove ¬P by contradiction.
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Proving positive statements by contradiction

You can also prove positive statements by contradiction.

P is equivalent to ¬¬P, and you can prove ¬¬P by contradiction.

Namely, you assume ¬P and derive a contradiction.
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¬’s and →’s together

Combining facts about ¬ and → gives us another method to prove
if-then statements.

P → Q is equivalent to its contrapositive ¬Q → ¬P.

To prove the contrapositive, we assume ¬Q and try to derive ¬P.

This is called, naturally enough, proof by contrapositive.

This also gives us another way to use if-then statements as knowns.

If we know both P → Q and ¬Q then we can conclude ¬P.

This method is known as modus tollens.
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