
MATH321: INDUCTION PROOFS

KAMERYN J. WILLIAMS

Mathematical induction is a commonly used proof strategy. The purpose of this document is to
give you some examples of some proofs by induction so you can see how they are written.

Before we see some examples I’d like to briefly discuss what the general template looks like.
The basic format looks something like the following.

Theorem 1. A statement P (n) about natural numbers, usually though not always formulated as
being about arbitrary natural numbers n. (Or k or a or whatever variable you want to use.) Other
variables may also appear, but at least one of them is being universally quantified over.

Proof. We prove this by induction on n. (Or if you used a different variable, that variable.)
The base case is n = 0. (It might be n = 1 or less often higher, depending on whether or not

the theorem includes 0 as a possible case.) [Argument for base case goes here.]
For the inductive step, assume P (n) and we want to show P (n+ 1). [Argument for this if-then

goes here.] �

A few comments. First, it’s good form to explicitly say at the beginning of your proof that you’ll
be using induction. This helps the reader to follow your argument. Second, it’s best to say which
variable you’re doing induction on. This can get dropped if it’s clear from context, but often a
statement will include multiple variables and it’s easier on the reader if they know which one is
being used for the inductive argument. It’s also good to mark the two parts of the inductive proof.
When doing the inductive step, it’s nice to the reader to make explicit where you use the inductive
hypothesis of P (n).

This is the general template, but you’ll see variations. In particular, mathematicians will often
omit easy details—often the base case is trivial—or the guidepost phrases which tell the reader
what is happening where. For example, you might see something like:

• We prove this by induction on n. Assume P (n). [Proceeds to show P (n+ 1).]

The base case was not written—presumably because it’s easy—and nothing was said about how
what was being written is the inductive step. I would advise you not to write induction proofs like
this, at least in this class. Instead, it’s better to be clearer and not skip steps.

1. Proofs by induction

Introductory remarks out of the way, let’s see some examples. You can see further examples in
Section 6.2 from the textbook.

Proposition 2. The sum of the first k many odd numbers, for k ≥ 1, is k2.

Date: November 4, 2020.

1



2 KAMERYN J. WILLIAMS

Proof. We prove this by induction on k. The base case k = 1 is the equation 1 = 12, which is clear.
For the inductive step, assume that

1 + · · ·+ (2k − 1) =

k∑
i=1

2i− 1 = k2,

and we want to show that

1 + · · ·+ (2k − 1) + (2k + 1) =

k+1∑
i=1

2i− 1 = (k + 1)2.

But this is straightforward: (k + 1)2 = k2 + 2k + 1 and this by inductive hypothesis is

1 + · · ·+ (2k − 1)︸ ︷︷ ︸
=k2

+(2k + 1). �

Proposition 3. For all positive integers k, we have 2k > k.

Proof. We prove this by induction on k. The base case k = 1 is the equation 21 = 2 > 1, which is
obviously true. For the inductive step, assume that 2k > k and we want to show that 2k+1 > k+ 1.
We have that 2k > k, so 2k+1 = 2 · 2k > 2k = k + k > k + 1. The last inequality is because
k ≥ 1. �

Proposition 4. For all nonnegative integers k we have

(∗k) 10k+1 − 1 = 9 · 100 + 9 · 101 + · · ·+ 9 · 10k =

k∑
i=0

9 · 10i.

Proof. We prove this by induction on k. The base case k = 0 is 101 − 1 = 10− 1 = 9 = 9 · 100. For
the inductive step, assume the equation (∗k), and we want to show the equation (∗k+1). To that
end, note that

10k+2 − 1 = (9 + 1) · 10k+1 − 1 = 9 · 10k+1 + 10k+1 − 1.

By inductive hypothesis, this is

9 · 10k+1 +

(
k∑

i=0

9 · 10i

)
=

k+1∑
i=0

9 · 10i.

This establishes (∗k+1), completing the proof. �

Exercise 5. Show for all n ≥ 2 and all k ≥ 0 that

nk+1 − 1 =

k∑
i=0

(n− 1) · ni.

[Hint: fix n and then do induction on k.]

Proposition 6. The interior angles of a concave polygon with n sides sum to (n− 2)π radians.

Indeed, this is also true for non-concave polygons, but it’s trickier to justify one step in the proof,
so I restrict to the easier case.
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Proof. The base case is n = 3. It is a well-known geometric fact that a triangle’s interior angles
sum to π radians.1 Now proceed to the inductive step. Assume that every concave n-gon has its
angles sum to (n− 2)π radians. Consider a concave (n+ 1)-gon. Because it is concave if you take
the triangle formed from three of its adjacent vertices then this triangle is contained inside the
(n + 1)-gon. That is, we can split the (n + 1)-gon into a triangle and an n-gon, where the sum of
the interior angles for the (n+1)-gon is the sum of the interior angles of the triangle and the n-gon.
By inductive hypothesis, the n-gon’s interior angles sum to (n − 2)π, and we know the triangle’s
interior angles sum to π. So the (n+1)-gon’s interior angles sum to (n−1)π, which is exactly what
we wanted to show. �

Remark 7. It’s probably easiest to understand what’s going on if you draw a picture: draw a
concave polygon with > 3 sides and then form a triangle from three adjacent vertices.

For this next propositions, we need a new definition. Recall that n! is the product of the integers
from 1 to n, with 0! = 1. Now define, for all n and 0 ≤ k ≤ n:(

n

k

)
=

n!

k!(n− k)!
.

If k < 0 or k > n then we let
(
n
k

)
= 0.

One could alternatively make the following definitions: n! is the number of ways to arrange n
objects in a linear order, while

(
n
k

)
is the number of ways to pick k objects from a collection of size

n, where you don’t care about the order they were picked. A good exercise is to check that this
definition gives the same formulae for n! and

(
n
k

)
.

Proposition 8. For all n ≥ 1 and k we have
(
n+1
k

)
=
(

n
k−1
)

+
(
n
k

)
.

This one we don’t prove by induction :)

Proof. Fix n and k and consider
(
n+1
k

)
. Imagine picking k objects from a collection of size n + 1.

Split that collection into a subcollection of size n and an extra object singled out. There are two
ways we might pick k objects from that (n+ 1)-sized collection. First, we might pick all k objects
from the subcollection of size n. Second, we might pick the singled out object and then pick k − 1
objects from the subcollection of size n. For the first, there are

(
n
k

)
ways to make this choice. For

the second, there are
(

n
k−1
)

ways to make this choice. These two ways of picking are distinct, so

there are in total
(
n
k

)
+
(

n
k−1
)

ways of picking. That is, we have seen
(
n+1
k

)
=
(
n
k

)
+
(

n
k−1
)
. �

Remark 9. I didn’t explicitly address the case k < 0 or k > n. Can you explain why thoes cases
are fine?

Proposition 10. For all n ≥ 0 we have

(BTn) 2n =

n∑
k=0

(
n

k

)
.

Proof. This we do by induction. I leave the base case n = 0 to you to check. For the inductive
step, assume the equation (BTn). Now consider

n+1∑
k=0

(
n+ 1

k

)
=

(
n+ 1

0

)
+

n+1∑
k=1

(
n+ 1

k

)
.

1If you’re unhappy with this, you’re welcome to give your own proof of the fact :)
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By the previous proposition we can rewrite this as

1 +

n+1∑
k=1

((
n

k − 1

)
+

(
n

k

))
= 1 +

(
n+1∑
k=1

(
n

k − 1

))
+

(
n+1∑
k=1

(
n

k

))
.

Let’s re-index the left sum to be from k = 0 to k = n, and for the second sum include the 1 =
(
n
0

)
in the front and use that

(
n

n+1

)
= 0, so we can rewrite this as:(
n∑

k=0

(
n

k

))
+

(
n∑

k=0

(
n

k

))
= 2

n∑
k=0

(
n

k

)
.

By inductive hypothesis this is 2 · 2n = 2n+1, completing the proof. �

For the previous two propositions, it may help to think in terms of Pascal’s triangle. Start with
row 0 consisting of just the number 1. Then row 1 consists of two 1s, to each side of the 1 from
row 0. For row n + 1, each entry is the sum of the two entries above, where a blank spot—for
determining what goes on the two positions on the end of the row—is treated as a 0:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

...

If you index rows starting at 0, then
(
n
k

)
is the k-th element on the n-th row. The first proposition

says that each entry is the sum of the two above, and the second proposition says that the n-th
row sums to 2n.

Exercise 11. Prove the binomial theorem: for each natural number n, the binomial exponent
(A+B)n can be written as(

n

0

)
An +

(
n

1

)
An−1B1 + · · ·+

(
n

n− 1

)
A1Bn−1 +

(
n

n

)
Bn =

n∑
k=0

(
n

k

)
An−kBk.

[Hint: do induction on n.]

2. Definitions by recursion

Many definitions in mathematics are recursive definitions—you define how to handle the base
case(s), and then inductively how to carry the definition upward. Often, these end up being by
recursion on the natural numbers. You give the base case, usually n = 0 or n = 1, and then the
recursive step defines the n+ 1 case in terms of the n case.

As an example, let’s go beyond exponentiation.
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Definition 12. The tetration2 operation, written n ↑ k,3 is defined as follows, for n ∈ N:

• n ↑ 0 = 1; and
• n ↑ k + 1 = nn↑k.

Tetration grows really fast! To illustrate this, let’s calculate the first few values of 2↑k and 3↑k:
k 2 ↑ k 3 ↑ k
0 1 1
1 2 3
2 4 27
3 16 7, 625, 597, 484, 987
4 65, 536 ∗4

Remark 13. The rules for exponents don’t generalize to tetration. For example, (xy) ↑ n in general
is not equal to (x ↑ n)(y ↑ n).

Let’s now make another definition by recursion, to see an example of where tetration can be
applied.

Definition 14. The iterated powerset Pn(X) operation on a set X is defined as follows.

• P0(X) = X; and
• Pn+1(X) = P(Pn(X)).

This is an instance of a more general phenomenon. If f is a function or operation (these are
synonyms), then fn is the function obtained by repeatedly doing f a total of n times.

Proposition 15. For all natural numbers n we have Pn+1(∅) has 2 ↑ n elements.

Proof. By induction. The base case n = 0 is the observation that P(∅) = {∅} has 1 = 2↑0 elements.
For the inductive step, assume Pn(∅) has 2 ↑ n elements. To conclude that Pn+2(∅) = P(Pn+1(∅))
has 2 ↑ (n+ 1) = 22↑n elements it suffices to know that if a set X has k elements then P(X) has 2k

elements.
We have already discussed this in class, but let’s do it again. SupposeX has k elements x1, . . . , xk.

To make a subset A of X you have k many binary choices: does A include the element xi, for each
1 ≤ i ≤ k. These choices are independent, so you have

2 · 2 · · · · · 2︸ ︷︷ ︸
n many

= 2n

possible subsets of X. �

The lesson of this proposition is that even if you start from a very small set—the empty set, the
smallest set you can have—by iterating the powerset it grows very fast.

(Kameryn J. Williams) University of Hawai‘i at Mānoa, Department of Mathematics, 2565 McCarthy
Mall, Keller 401A, Honolulu, HI 96822, USA

E-mail address: kamerynw@hawaii.edu
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2From “tetra”, meaning 4. The idea is, if you start with addition as stage 1, then multiplication—
iterated addition—is stage 2, exponentiation—iterated multiplication—is stage 3—and so tetration—iterated

exponentiation—is stage 4.
3This is not standard notation, but there is no standard notation here.
4This overflowed my computer when I tried to calculate it. And this was with a programming language that

would give me the exact value of 2 ↑ 5 ≈ 2 · 1019728.


