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Induction on N

Last time, we talked about Mathematical Induction, and talked about the
most important context in which it’s formulated, namely with the natural
numbers N.

Mathematical Induction

To prove ∀n ∈ N P(n):

1 Prove P(0).

2 Prove if P(n) then P(n + 1).

For today, I want to talk about a different perspective on induction on N,
with a different explanation for why it’s a valid proof technique.
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Well-orders

One very nice property about N is that it is a well-order. There’s two
equivalent ways to formulate this property:

1 If you take any nonempty set X ⊆ N then X has a smallest element.

2 If you take any descending sequence a0 ≥ a1 ≥ · · · ≥ an ≥ · · · of
natural numbers, then it is eventually constant.

Before we see what this has to do with induction, let’s check that those
two properties really are equivalent formulations of the same thing.
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Characterizing being a well-order

Proposition

The following two properties are equivalent.

1 If you take any nonempty set X ⊆ N then X has a smallest element.

2 If you take any descending sequence a0 ≥ a1 ≥ · · · ≥ an ≥ · · · from
N, then it is eventually constant.

(In fact, this is true for more than just N, and the equivalence holds for
any linear order.)

(−→) We check this by contrapositive. Suppose we have a decreasing
sequence of natural numbers which is not eventually constant. By throwing
out any repetitions, we can thin it down to a strictly decreasing sequence

a0 > a1 > · · · > an > · · · n ∈ N.

Now consider X = {an : n ∈ N}. Then X cannot have a smallest element.
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Characterizing being a well-order

Proposition

The following two properties are equivalent.

1 Any nonempty set X ⊆ N then X has a smallest element.

2 Any infinite descending sequence from N is eventually constant.

(←−) Also by contrapositive. Consider nonempty X0 ⊆ N so that X0 does
not have a smallest element. So if we pick any a0 ∈ X0 then the set
X1 = {a ∈ X0 : a < a0} is nonempty. Notice that X1 cannot have a
smallest element, as its smallest element would have to also be the
smallest element of X . Pick any a1 ∈ X .
Now repeat the process inductively. Suppose we have already picked
a0 > a1 > · · · > an, where ai ∈ Xi and Xi+1 = {a ∈ Xi : a < ai}. Just as
before, Xn+1 is nonempty and cannot have a smallest element. Pick any
an+1 ∈ Xn+1 and set Xn+2 = {a ∈ Xn+1 : a < an+1}.
So we have built an infinite strictly decreasing sequence
a0 > a1 > · · · > an > · · · .
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Remark on that proof

For the ←− direction, we used an induction argument. The sets Xn were
defined recursively, and then we inductively showed that each one had the
property we needed—namely being nonempty and having no smallest
element. In math we sometimes do this sort of argument where we
interleave the building up of objects step by step with the inductive
argument that the objects behave as we want.
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But what does this have to do with induction?

We can use the property of being a well-order to justify why induction is a
valid proof technique. Let’s use the first characterization—every nonempty
subset of N has a smallest element.

We want to prove ∀n ∈ N P(n).

We prove two things: P(0) and, for all n, if P(n) then P(n + 1).

Let’s see why this gives us what we want, namely P(n) for all n.

Suppose toward a contradiction that there were n ∈ N so that P(n)
were false. Let X = {n ∈ N : ¬P(n)}. Then X is nonempty.

By well-orderedness, X has a smallest element, call it m.

It cannot be that m = 0, since we checked that P(0) and so 0 6∈ X .

So it must be that m = n + 1 for some n. but m is the smallest
element of X , so n 6∈ X . That is, we have P(n). By the inductive
step we conclude P(n + 1), i.e. P(m). This is a contradiction.
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Well-orderedness implies induction is valid

The idea from the previous slide can be summarized as a slogan:

Being a well-order implies that if you have a counterexample to P(n)
you have a smallest counterexample, but the induction argument says
there cannot be a smallest counterexample.

You can use this smallest counterexample idea to prove things. This
technique, which is really just a form of induction, is known as proof by
infinite descent.
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An example of a proof by infinite descent

Theorem
√

2 is irrational.

We can reformulate our earlier proof as a proof by infinite descent.

Proof.

Suppose toward a contradiction that
√

2 can be written as a ratio of two
integers. Since

√
2 is positive, we may take both integers to be positive.

Thus there must be a smallest natural number p so that there is some
q ∈ N with

√
2 = p/q.

Now some algebra yields that p2 = 2q2, whence both p2 and p are even.
But then, if p = 2k, we get that q2 = 2k2, whence both q2 and q are
even. So we get that

√
2 = p/2

q/2 is a ratio of natural numbers. This
contradicts that p was supposed to be the smallest natural number we
could put in the numerator.
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More about well-orders

While N is a well-order, it is not the only well-order.

You can formulate induction to apply to any well-order, but we won’t do
so in this class.
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Another way to formulate induction

This “no smallest counterexample” way of thinking about induction gives
us an alternative way to formulate it. This version is sometimes called
“strong induction”. It’s a terrible name, since this is the correct way to
formulate induction in the general context, but math is full of terrible
names :shrug:

To prove ∀n ∈ N P(n):

Prove: “for all n, if P(m) holds for all m < n then P(n) holds”. That
is, assume P(m) for all m < n and try to prove P(n).

Two comments:

This handles the case n = 0, since “P(m) for all m < 0” is vacuously
true.

For the earlier formulation of the induction step, we only assumed that
the immediate predecessor of n + 1 satisfies P. For this formulation,
we get to assume the stronger assumption that all predecessors satisfy
P. Sometimes this stronger assumption is useful in proofs.
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An example

Proposition

Every natural number > 1 is a product of one or more primes.

Proof.

We prove this by (strong) induction. Suppose n > 1 and that each m < n
is a product of primes. There are two cases to consider.
Case 1 (n is prime): Then trivially n is the product of the single prime n.
Case 2 (n is not prime). Then, by definition, n is the product of two
smaller numbers a and b. By the inductive hypothesis, a and b are both
products of primes, say

a = p1 · · · pk , b = q1 · · · q`.

But then
n = ab = p1 · · · pkq1 · · · q`

is also a prodct of primes.
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Remark on the example

Note that if you try to prove this by the other formulation of induction it’s
not clear how to proceed. How do you write n + 1 as a product of primes
just from knowing you can do it for n?
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