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Previously in Math 321

We’ve been learning strategies for proofs.

So far, the strategies have been based on the logical structure of the
statements being used.

On Tuesday we finally got to our last bit of logical notation: the
disjunction ∨.

So it might seem we’re done, there’s no more to discuss for proof
strategies.

It might seem so, but it’s wrong.
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Mathematical Induction

Our previous proof strategies were all based on logical content. There
was nothing specifically mathematical about them, and the same
proof strategies can be applied to formal logic outside of math.

The technique of Mathematical Induction is based on the structure
of certain mathematical objects and how they are built up. You could
call it the first properly mathematical proof strategy we’ll look at.
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A different meaning for induction

You have probably heard of induction in the sense of inductive
reasoning, as opposed to deductive reasoning like we do in
mathematics.

For example, we say that the sun will rise tomorrow morning because
we’ve observed lots of mornings of the sun rising, but have no
observations of it not rising. So it seems like it’ll continue to rise.

But we don’t have a proof that the sun will rise tomorrow, just
generalization from our experiences. I’d say we have good reason to
think the sun will rise tomorrow, but it doesn’t meet the standard of
evidence used in mathematics.

Mathematical induction is not this sense of induction. Mathematical
induction is a fully formal proof technique, much like the previous
ones we’ve learned.
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Building up mathematical objects

A lot of mathematical objects can be described by giving rules for how to
construct them.

For example, logical formulae.

We start with atomic formulae, like x2 < 2 or 1 + 1 = 2 or A ⊆ B.
These are the basic building blocks.

And corresponding to each bit of logical notation is a rule for building
up more formulae:

If ϕ and ψ are formulae, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.
If ϕ is a formula and x is a variable, then ∃x ϕ(x) and ∀x ϕ(x) are also
formulae.
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Building up mathematical objects

A lot of mathematical objects can be described by giving rules for how to
construct them.

For another example, many functions can be described this way.

Consider the factorial function f (n) = n! on the natural numbers.

This object, a function, is built up by saying how it behaves at 0, then
saying how it behaves at n > 0 based upon what happened below n.

Namely, the rules are:

0! = 1;
(n + 1)! = (n + 1) · n!.
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Building up mathematical objects

For mathematical objects that are described by rules of how to construct
them, we can follow the rules to prove things about those objects. This
method of proof is what we call

Mathematical Induction.

Before we talk about the general structure, let’s see a specific example.
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Example 1

Proposition

For every natural number n > 1, n! is divisible by all positive integers
k ≤ n.

Our proof will have two parts. The first is the base case, which gives us
the starting point. And the second is the induction step, where we see how
to build up from the base case to the general case.
(Base case) We need to check this is true for n = 1. But an easy
calculation gives 1! = 1 · 0! = 1 · 1 = 1, and clearly 1 is divisible by 1.
(Induction step). We need to prove that if the proposition holds for n!
then it holds for (n + 1)!. To prove this if-then statement, assume that n!
is divisible by all positive integers k ≤ n. Then (n + 1)! = (n + 1) · n! is
divisible by all positive integers k ≤ n, since it’s a multiple of n!. But also
(n + 1)! is divisible by n + 1. So (n + 1)! is divisible by all positive integers
k ≤ n + 1.
And now we are done.
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Why are we done?

Why was checking just those two steps enough to prove the result for all
n > 1? Let’s see what’s going on by looking at an example.

5! is divisible by all positive integers ≤ 5, i.e. 1, 2, 3, 4, and 5.

We could check this manually—compute 5! = 120 then check by
hand—but let’s follow the recipe from the previous slide.

1 We checked the proposition works for 1 in the base case.

2 By the induction step, we then conclude the proposition works for 2.

3 Again by the induction step we get the conclusion for 3.

4 Then we get it for 4.

5 And finally we get it for 5, like we wanted.

In general: since any n > 1 is obtained from 1 by adding 1 finitely many
times, we get the result for n by starting with the base case 1 and applying
the induction step n − 1 times.
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A general template for mathematical induction

A template to prove ∀x ∈ A P(x) about a collection A of objects x built
up by rules like this:

1 Prove P(x) holds for all base cases. These are the starting points that
aren’t built up from simpler cases.

For logical formulae, the base case is the atomic formulae. For the
factorial function, the base case is n = 0.

2 For each rule of the form “if x , y , . . . ∈ A then z ∈ A” prove: if P(x),
P(y), and so on, then P(z). These are the induction steps.

For logical formulae, you would prove: if P(ϕ) and P(ψ) then
P(ϕ ∧ ψ), and similar for the other rules.
For the factorial function, there’s only one rule to worry about here.
Prove: if P(n!) then P((n + 1)!).
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Example 2

Proposition

Every logical formula ϕ is equivalent to a formula ϕ∗ which doesn’t
contain any ∀s nor ∧s.

(Base case) This is obviously true for atomic formulae. They don’t contain
any logical symbols, only mathematical symbols, so they don’t contain ∀
nor ∧.
(Induction steps) If ϕ is equivalent to ϕ∗, then clearly ¬ϕ is equivalent to
¬ϕ∗, which has no ∀s nor ∧s. And a similar process works for the ∨ and ∃
cases. So we only need to check the ∧ and ∀ cases.
(∧) Suppose ϕ is equivalent to ϕ∗ and ψ is equivalent to ψ∗. Then ϕ ∧ ψ
is equivalent to ϕ∗ ∧ ψ∗ which is, by DeMorgan, equivalent to
¬(¬ϕ∗ ∨ ¬ψ∗). So we can get rid of the new ∧.
(∀) Suppose ϕ is equivalent to ϕ∗. Then ∀x ϕ(x) is equivalent to ∀x ϕ∗(x)
which is equivalent to ¬∃x ¬ϕ∗(x). So we can get rid of the new ∀.
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The most important case of mathematical induction

Many mathematical objects can be described by this sort of building up
process, but there is a special case that deserves mention because it is the
one most often used in induction.

I’m talking about the natural numbers N.
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Induction on N

We can describe N by a building up process:

(Base case) 0 is a natural number.

(Induction step) If n is a natural number then so is n + 1.

From this way of describing N we get a method for proving facts about
natural numbers by induction. To prove ∀n ∈ N P(n):

1 Prove P(0). This is usually, though not always, easy.

2 Prove: if P(n) then P(n + 1).

3 Conclude: P(n) holds for all natural numbers n.
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Example 3

Proposition

For all natural numbers n, we have 0 + 1 + 2 + · · ·+ n = n(n + 1)/2.

You can prove this directly—try this at home!—but let’s use induction.
(Base case) The left-hand side and right-hand side of the equation are
clearly both 0 when n = 0.
(Induction step) Suppose 0 + 1 + · · ·+ n = n(n + 1)/2. Let’s add n + 1 to
both sides:

0 + 1 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1)

=
n(n + 1)

2
+

2(n + 1)

2

=
(n + 1)(n + 2)

2
.

This is precisely what we wanted to show, so now we are done.
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