MATH 321: HOMEWORK 9 DUE THURSDAY, DEC 3 BY 11:59PM

Problem 1. Let A be a set with m elements and B be a set with n elements. Count the following.

- (1) The number of functions $f: A \to B$.
- (2) The number of constant functions $f: A \to B$.
- (3) The number of bijections $f: A \to A$.

Problem 2. Check that the function $f : \mathbb{R} \to (0, \infty)$ defined as $f(x) = e^x$ is one-to-one and onto $(0, \infty)$. Check that f(x+y) = f(x)f(y).¹ Determine f^{-1} .

Problem 3. Suppose $f : A \to B$. Prove the following.

- (1) If there is a function $g: B \to A$ so that $g \circ f = \mathrm{id}_A$ then f is one-to-one.
- (2) If there is a function $g: B \to A$ so that $f \circ g = \mathrm{id}_B$ then f is onto.
- (3) If there is a function $g: B \to A$ so that both $g \circ f = id_A$ and $f \circ g = id_B$ then f is a bijection.

¹Because it has these properties we call f a group isomorphism between the groups $(\mathbb{R}, +)$ and $((0, \infty), \cdot)$.