MATH 321: HOMEWORK 5 DUE THURSDAY, OCT 8 BY 11:59PM

For your proofs, you should submit fully written up formal proofs, i.e. not scratchwork.

Problem 1. Do problem #12 from page 144 of the textbook.

Problem 2. Suppose A, B, and C are sets. Prove that $A \cup C \subseteq B \cup C$ if and only if $A \setminus C \subseteq B \setminus C$.

Problem 3. Use induction to prove: for all natural numbers n, either n is even or n is odd. [To clarify: by even I mean multiple of 2 and by odd I mean 1 plus a multiple of 2. That is, don't just take odd to be defined as "not even" and make it a triviality.]

Problem 4. Prove the following stronger form of Euclid's Lemma.

Lemma. Suppose a_1, a_2, \ldots, a_n is a finite list of positive integers and let p be a prime number. Set $A = a_1 a_2 \cdots a_n$ to be the product of the a_i . If $p \mid A$, then $p \mid a_i$ for some i.

[Hint: Use the version of Euclid's Lemma from an earlier homework and then do induction on n.]